Low-Cost Depth Camera Pose Tracking for Mobile Platforms

The KinectFusion algorithm is now used routinely to reconstruct dense 3D surfaces at real-time frame rates using a commodity depth camera. To achieve robust pose estimation, the method conducts the frame-to-model tracking during camera tracking that must inevitably accompany the memory-bound, GPU-as...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct) s. 123 - 126
Hlavní autoři: Insung Ihm, Youngwook Kim, Jaehyun Lee, Jiman Jeong, Ingu Park
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2016
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The KinectFusion algorithm is now used routinely to reconstruct dense 3D surfaces at real-time frame rates using a commodity depth camera. To achieve robust pose estimation, the method conducts the frame-to-model tracking during camera tracking that must inevitably accompany the memory-bound, GPU-assisted volumetric computations for the model manipulation, to which mobile processors are often more vulnerable than PC-based processors. In this paper, we present an effective camera-tracking method that is based on the computationally lighter frame-to-frame tracking method. This method's tendency toward rapid accumulation of pose estimation errors is suppressed effectively via a predictor-corrector technique. By removing the costly volumetric computations from the pose estimation process, our camera tracking system becomes more efficient in terms of both time and space complexity, offering a compact implementation of depth sensor-based camera tracking on low-end platforms such as mobile devices in addition to high-end PCs.
AbstractList The KinectFusion algorithm is now used routinely to reconstruct dense 3D surfaces at real-time frame rates using a commodity depth camera. To achieve robust pose estimation, the method conducts the frame-to-model tracking during camera tracking that must inevitably accompany the memory-bound, GPU-assisted volumetric computations for the model manipulation, to which mobile processors are often more vulnerable than PC-based processors. In this paper, we present an effective camera-tracking method that is based on the computationally lighter frame-to-frame tracking method. This method's tendency toward rapid accumulation of pose estimation errors is suppressed effectively via a predictor-corrector technique. By removing the costly volumetric computations from the pose estimation process, our camera tracking system becomes more efficient in terms of both time and space complexity, offering a compact implementation of depth sensor-based camera tracking on low-end platforms such as mobile devices in addition to high-end PCs.
Author Ingu Park
Jiman Jeong
Jaehyun Lee
Youngwook Kim
Insung Ihm
Author_xml – sequence: 1
  surname: Insung Ihm
  fullname: Insung Ihm
  email: ihm@sogang.ac.kr
  organization: Dept. of Comput. Sci. & Eng., Sogang Univ., Seoul, South Korea
– sequence: 2
  surname: Youngwook Kim
  fullname: Youngwook Kim
  email: kimyu7@sogang.ac.kr
  organization: Dept. of Comput. Sci. & Eng., Sogang Univ., Seoul, South Korea
– sequence: 3
  surname: Jaehyun Lee
  fullname: Jaehyun Lee
  email: kidsnow@sogang.ac.kr
  organization: Dept. of Comput. Sci. & Eng., Sogang Univ., Seoul, South Korea
– sequence: 4
  surname: Jiman Jeong
  fullname: Jiman Jeong
  email: sixzone11@sogang.ac.kr
  organization: Dept. of Comput. Sci. & Eng., Sogang Univ., Seoul, South Korea
– sequence: 5
  surname: Ingu Park
  fullname: Ingu Park
  email: ssault@ncsoft.com
  organization: NCSOFT Corp., South Korea
BookMark eNotjctOwzAUBY0EC1r4Ahb4Bxyu7cSul1F4tFIqKsi-sp1rCCRxlRgh_p5IsDmj2cxZkfMxjkjILYeMczB3u9d9-cLK9uNr9CkTwFUGUOgzsuIFGJA6B3lJNnX8ZlWcE73HU3qnlR1wsvQQZ6TNZP1nN77RECe6j67rkR56mxYd5ityEWw_4_U_16R5fGiqLaufn3ZVWbPOQGIOBIDhCKIFzLVebpXmEmRAFK0Gq50JQSjjg9CtU8Jri9aKkAffFs7LNbn5y3aIeDxN3WCnn6PeSJUv8ws_VUUP
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISMAR-Adjunct.2016.0057
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509037403
9781509037407
EndPage 126
ExternalDocumentID 7836478
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-b020091e02d0e477037671303fee2d70a7b9ff269cf27db62c7aeaa2f4fcd5bc3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:36 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b020091e02d0e477037671303fee2d70a7b9ff269cf27db62c7aeaa2f4fcd5bc3
PageCount 4
ParticipantIDs ieee_primary_7836478
PublicationCentury 2000
PublicationDate 2016-Sept.
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationTitle 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct)
PublicationTitleAbbrev ISMARW
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6263349
Snippet The KinectFusion algorithm is now used routinely to reconstruct dense 3D surfaces at real-time frame rates using a commodity depth camera. To achieve robust...
SourceID ieee
SourceType Publisher
StartPage 123
SubjectTerms Cameras
Computational modeling
I.3.3 [Computer Graphics]: Picture/Image Generation-Digitizing and Scanning; I.4.8 [Image Processing and Computer Vision]: Scene Analysis-Tracking H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems-Artificial
Iterative closest point algorithm
Mobile communication
Pose estimation
Solid modeling
Three-dimensional displays
Title Low-Cost Depth Camera Pose Tracking for Mobile Platforms
URI https://ieeexplore.ieee.org/document/7836478
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1t8eBJpRW_ycGjsWnc3WyOZbUotGXRIr2VfEywIt3S3erfN7MtFcGLt5BLmIThvczMmyHkWmCLb-6xx74LH5Q0tgx7xDDjPbfacifrDP7rUI7H6XSq8ga52WlhAKAuPoNbXNa5fFfYNYbKuqg4iGTaJE0pk41Wa1uy1eOq-_Qy6j-zvnsPgIBVkj1MM8S_x6bUqDE4-N95h6TzI7-j-Q5YjkgDFm2SDosvlhVlRe9hWb3RTGM4ieZFCTQAjsWQNw0MlI4KEzyd5h-6QkJadshk8DDJHtl27AGbK14xwzFh0QMuHIdIBo-UiUSk8QDCSa6lUd6LRFkvpDOJsFKD1sJH3rrY2Ltj0loUCzghVMReqVjzOE1UFHiBCfQhkuC5V8ZwmZySNho9W24aW8y29p79vX1O9vFSNwVWF6RVrdZwSfbsZzUvV1f1a3wDKuWMzg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21CnpSacVvc_Do2jTubjbHUpUWt2XRIr2VfEywIt3S3erfN7MtFcGLt5BLmIThvczMmyHkmmOLb-awx771H5QkMgH2iAm0c8wow6yoMvivqRgOk_FYZjVys9HCAEBVfAa3uKxy-TY3SwyVtVBxEIpki2xHYcjZSq21LtpqM9nqvww6z0HHvntIwDrJNiYaot-DUyrceNz_34kHpPkjwKPZBloOSQ1mDZKk-VfQzYuS3sO8fKNdhQElmuUFUA85BoPe1HNQOsi193WafagSKWnRJKPHh1G3F6wHHwRTycpAM0xZtIFxyyAU3idFLBBrHAC3gimhpXM8lsZxYXXMjVCgFHehMzbS5u6I1Gf5DI4J5ZGTMlIsSmIZemagPYEIBTjmpNZMxCekgUZP5qvWFpO1vad_b1-R3d5okE7S_vDpjOzhBa_Krc5JvVws4YLsmM9yWiwuq5f5Bq7KkBU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Symposium+on+Mixed+and+Augmented+Reality+%28ISMAR-Adjunct%29&rft.atitle=Low-Cost+Depth+Camera+Pose+Tracking+for+Mobile+Platforms&rft.au=Insung+Ihm&rft.au=Youngwook+Kim&rft.au=Jaehyun+Lee&rft.au=Jiman+Jeong&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=123&rft.epage=126&rft_id=info:doi/10.1109%2FISMAR-Adjunct.2016.0057&rft.externalDocID=7836478