Low-Cost Depth Camera Pose Tracking for Mobile Platforms

The KinectFusion algorithm is now used routinely to reconstruct dense 3D surfaces at real-time frame rates using a commodity depth camera. To achieve robust pose estimation, the method conducts the frame-to-model tracking during camera tracking that must inevitably accompany the memory-bound, GPU-as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct) S. 123 - 126
Hauptverfasser: Insung Ihm, Youngwook Kim, Jaehyun Lee, Jiman Jeong, Ingu Park
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2016
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The KinectFusion algorithm is now used routinely to reconstruct dense 3D surfaces at real-time frame rates using a commodity depth camera. To achieve robust pose estimation, the method conducts the frame-to-model tracking during camera tracking that must inevitably accompany the memory-bound, GPU-assisted volumetric computations for the model manipulation, to which mobile processors are often more vulnerable than PC-based processors. In this paper, we present an effective camera-tracking method that is based on the computationally lighter frame-to-frame tracking method. This method's tendency toward rapid accumulation of pose estimation errors is suppressed effectively via a predictor-corrector technique. By removing the costly volumetric computations from the pose estimation process, our camera tracking system becomes more efficient in terms of both time and space complexity, offering a compact implementation of depth sensor-based camera tracking on low-end platforms such as mobile devices in addition to high-end PCs.
AbstractList The KinectFusion algorithm is now used routinely to reconstruct dense 3D surfaces at real-time frame rates using a commodity depth camera. To achieve robust pose estimation, the method conducts the frame-to-model tracking during camera tracking that must inevitably accompany the memory-bound, GPU-assisted volumetric computations for the model manipulation, to which mobile processors are often more vulnerable than PC-based processors. In this paper, we present an effective camera-tracking method that is based on the computationally lighter frame-to-frame tracking method. This method's tendency toward rapid accumulation of pose estimation errors is suppressed effectively via a predictor-corrector technique. By removing the costly volumetric computations from the pose estimation process, our camera tracking system becomes more efficient in terms of both time and space complexity, offering a compact implementation of depth sensor-based camera tracking on low-end platforms such as mobile devices in addition to high-end PCs.
Author Ingu Park
Jiman Jeong
Jaehyun Lee
Youngwook Kim
Insung Ihm
Author_xml – sequence: 1
  surname: Insung Ihm
  fullname: Insung Ihm
  email: ihm@sogang.ac.kr
  organization: Dept. of Comput. Sci. & Eng., Sogang Univ., Seoul, South Korea
– sequence: 2
  surname: Youngwook Kim
  fullname: Youngwook Kim
  email: kimyu7@sogang.ac.kr
  organization: Dept. of Comput. Sci. & Eng., Sogang Univ., Seoul, South Korea
– sequence: 3
  surname: Jaehyun Lee
  fullname: Jaehyun Lee
  email: kidsnow@sogang.ac.kr
  organization: Dept. of Comput. Sci. & Eng., Sogang Univ., Seoul, South Korea
– sequence: 4
  surname: Jiman Jeong
  fullname: Jiman Jeong
  email: sixzone11@sogang.ac.kr
  organization: Dept. of Comput. Sci. & Eng., Sogang Univ., Seoul, South Korea
– sequence: 5
  surname: Ingu Park
  fullname: Ingu Park
  email: ssault@ncsoft.com
  organization: NCSOFT Corp., South Korea
BookMark eNotjctOwzAUBY0EC1r4Ahb4Bxyu7cSul1F4tFIqKsi-sp1rCCRxlRgh_p5IsDmj2cxZkfMxjkjILYeMczB3u9d9-cLK9uNr9CkTwFUGUOgzsuIFGJA6B3lJNnX8ZlWcE73HU3qnlR1wsvQQZ6TNZP1nN77RECe6j67rkR56mxYd5ityEWw_4_U_16R5fGiqLaufn3ZVWbPOQGIOBIDhCKIFzLVebpXmEmRAFK0Gq50JQSjjg9CtU8Jri9aKkAffFs7LNbn5y3aIeDxN3WCnn6PeSJUv8ws_VUUP
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISMAR-Adjunct.2016.0057
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509037403
9781509037407
EndPage 126
ExternalDocumentID 7836478
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-b020091e02d0e477037671303fee2d70a7b9ff269cf27db62c7aeaa2f4fcd5bc3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:36 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b020091e02d0e477037671303fee2d70a7b9ff269cf27db62c7aeaa2f4fcd5bc3
PageCount 4
ParticipantIDs ieee_primary_7836478
PublicationCentury 2000
PublicationDate 2016-Sept.
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationTitle 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct)
PublicationTitleAbbrev ISMARW
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6263349
Snippet The KinectFusion algorithm is now used routinely to reconstruct dense 3D surfaces at real-time frame rates using a commodity depth camera. To achieve robust...
SourceID ieee
SourceType Publisher
StartPage 123
SubjectTerms Cameras
Computational modeling
I.3.3 [Computer Graphics]: Picture/Image Generation-Digitizing and Scanning; I.4.8 [Image Processing and Computer Vision]: Scene Analysis-Tracking H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems-Artificial
Iterative closest point algorithm
Mobile communication
Pose estimation
Solid modeling
Three-dimensional displays
Title Low-Cost Depth Camera Pose Tracking for Mobile Platforms
URI https://ieeexplore.ieee.org/document/7836478
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BSgMxEB3a4sGTSitqVXLwaGya3Ww2x1ItCrYs2kNvJclOsCLd0t3q75tsS0Xw4i2EQJiEyRtm3ssA3GCUWKEiQVEoTv3rp2kaWUel0lxZZxLNTN1sQk4m6Wymsgbc7rUwiFiTz_AuDOtafl7YTUiV9YLiIJZpE5pSJlut1o6y1Weq9_Q6HrzQQf7uASGwJPuhzCB-t02pUWN09L_9jqHzI78j2R5YTqCByzakz8UXHRZlRe5xVb2RoQ7pJJIVJRIPODakvImPQMm4MN7TSfahqxCQlh2Yjh6mw0e6a3tAF4pV1LBQsOgj4znDWHqPlIkMSOMQeS6ZlkY5xxN_klzmJuFWatSau9jZXBgbnUJrWSzxDAg6oQO_gWmnY2l1mvo1SsU-5nBxIsw5tIPR89X2Y4v5zt6Lv6e7cBgOdUuwuoRWtd7gFRzYz2pRrq_r2_gGWa6N_Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21CnpSacVvc_BobJpNNptjqZYW27JoD72VJDtBRbqlu9W_b7ItFcGLtxACYRImb5h5L4PQLUSxFSoSBIRixL9-miSRdUQqzZR1JtbUVM0m5HicTKcqraG7rRYGACryGdyHYVXLz3K7CqmyVlAccJnsoF3BOaNrtdaGtNWmqjV4GXWeSSd795AQeJLtUGgQvxunVLjRO_zfjkeo-SPAw-kWWo5RDeYNlAzzL9LNixI_wKJ8xV0dEko4zQvAHnJsSHpjH4PiUW68r-P0Q5chJC2aaNJ7nHT7ZNP4gLwpWhJDQ8miDZRlFLj0PiljGbDGAbBMUi2Nco7F_iyZzEzMrNSgNXPc2UwYG52g-jyfwynC4IQODAeqnebS6iTxa5TiPupwPBbmDDWC0bPF-muL2cbe87-nb9B-fzIazoaD8dMFOggHvKZbXaJ6uVzBFdqzn-VbsbyubuYb7K-RRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Symposium+on+Mixed+and+Augmented+Reality+%28ISMAR-Adjunct%29&rft.atitle=Low-Cost+Depth+Camera+Pose+Tracking+for+Mobile+Platforms&rft.au=Insung+Ihm&rft.au=Youngwook+Kim&rft.au=Jaehyun+Lee&rft.au=Jiman+Jeong&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=123&rft.epage=126&rft_id=info:doi/10.1109%2FISMAR-Adjunct.2016.0057&rft.externalDocID=7836478