Multiobjective optimization by Artificial Fish Swarm Algorithm

Artificial Fish Swarm Algorithm (AFSA) is a kind of swarm intelligence algorithm, which has the features of fast convergence, good global search capability, strong robustness and so on. In this paper, an approach using AFSA to solve the multiobjective optimization problem is proposed. In this algori...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 IEEE International Conference on Computer Science and Automation Engineering Ročník 3; s. 506 - 511
Hlavní autoři: Mingyan Jiang, Kongcun Zhu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2011
Témata:
ISBN:9781424487271, 1424487277
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Artificial Fish Swarm Algorithm (AFSA) is a kind of swarm intelligence algorithm, which has the features of fast convergence, good global search capability, strong robustness and so on. In this paper, an approach using AFSA to solve the multiobjective optimization problem is proposed. In this algorithm, the concept of Pareto dominance is used to evaluate the pros and cons of Artificial Fish (AF). Artificial fish swarm search the solution space in parallel and External Record Set is used to save the found Pareto optimal solutions. The simulation results of 4 benchmark test functions illustrate the effectiveness of the proposed algorithm.
ISBN:9781424487271
1424487277
DOI:10.1109/CSAE.2011.5952729