Multiobjective optimization by Artificial Fish Swarm Algorithm

Artificial Fish Swarm Algorithm (AFSA) is a kind of swarm intelligence algorithm, which has the features of fast convergence, good global search capability, strong robustness and so on. In this paper, an approach using AFSA to solve the multiobjective optimization problem is proposed. In this algori...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2011 IEEE International Conference on Computer Science and Automation Engineering Ročník 3; s. 506 - 511
Hlavní autori: Mingyan Jiang, Kongcun Zhu
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2011
Predmet:
ISBN:9781424487271, 1424487277
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Artificial Fish Swarm Algorithm (AFSA) is a kind of swarm intelligence algorithm, which has the features of fast convergence, good global search capability, strong robustness and so on. In this paper, an approach using AFSA to solve the multiobjective optimization problem is proposed. In this algorithm, the concept of Pareto dominance is used to evaluate the pros and cons of Artificial Fish (AF). Artificial fish swarm search the solution space in parallel and External Record Set is used to save the found Pareto optimal solutions. The simulation results of 4 benchmark test functions illustrate the effectiveness of the proposed algorithm.
ISBN:9781424487271
1424487277
DOI:10.1109/CSAE.2011.5952729