Velocity control in a right-turn across traffic scenario for autonomous vehicles using kernel-based reinforcement learning

Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 Chinese Automation Congress (CAC) S. 6211 - 6216
Hauptverfasser: Yuxiang Zhang, Bingzhao Gao, Lulu Guo, Hong Chen, Jinghua Zhao
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2017
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the kernel-based least squares policy iteration algorithm(KLSPI) is applied. Simulation results show that the proposed method can perform different policy in different cases, which preliminarily verify the rationality.
DOI:10.1109/CAC.2017.8243896