Velocity control in a right-turn across traffic scenario for autonomous vehicles using kernel-based reinforcement learning

Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2017 Chinese Automation Congress (CAC) s. 6211 - 6216
Hlavní autoři: Yuxiang Zhang, Bingzhao Gao, Lulu Guo, Hong Chen, Jinghua Zhao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2017
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the kernel-based least squares policy iteration algorithm(KLSPI) is applied. Simulation results show that the proposed method can perform different policy in different cases, which preliminarily verify the rationality.
AbstractList Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the kernel-based least squares policy iteration algorithm(KLSPI) is applied. Simulation results show that the proposed method can perform different policy in different cases, which preliminarily verify the rationality.
Author Yuxiang Zhang
Bingzhao Gao
Hong Chen
Jinghua Zhao
Lulu Guo
Author_xml – sequence: 1
  surname: Yuxiang Zhang
  fullname: Yuxiang Zhang
  organization: State Key Lab. of Automotive Simulation & Control, Jilin Univ., Changchun, China
– sequence: 2
  surname: Bingzhao Gao
  fullname: Bingzhao Gao
  organization: State Key Lab. of Automotive Simulation & Control, Jilin Univ., Changchun, China
– sequence: 3
  surname: Lulu Guo
  fullname: Lulu Guo
  organization: State Key Lab. of Automotive Simulation & Control, Jilin Univ., Changchun, China
– sequence: 4
  surname: Hong Chen
  fullname: Hong Chen
  email: chenh@jlu.edu.cn
  organization: State Key Lab. of Automotive Simulation & Control, Jilin Univ., Changchun, China
– sequence: 5
  surname: Jinghua Zhao
  fullname: Jinghua Zhao
  organization: Comput. Coll., Jilin Normal Univ., Siping, China
BookMark eNotkL1qwzAURlVohybtXuhyX8DulWQ79hhM_yDQJXQNknyViNpSkeRC-vQ1NNPhg8M3nBW79sETYw8cS86xe-q3fSmQb8pWVLLtmiu24rVsG1mLCm_Z7yeNwbh8BhN8jmEE50FBdMdTLvIcl2FiSAlyVNY6A8mQV9EFsCGCmnPwYQpzgh86OTNSgjk5f4Qvip7GQqtEA0RyftENTeQzjKSiX5w7dmPVmOj-wjXbvzzv-7di9_H63m93heswF8pgg6pDbclWutLK2KEWA9Z1PWjbChQWudAtl93QWtpoYRXqTmMjOXFNcs0e_28dER2-o5tUPB8uNeQfG6NdOQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CAC.2017.8243896
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538635240
9781538635247
EndPage 6216
ExternalDocumentID 8243896
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-ac060a90bfef4b4bacfd52d0555dbf8202f012b8139d8fe7b2fa0b9b0631e1be3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:39 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-ac060a90bfef4b4bacfd52d0555dbf8202f012b8139d8fe7b2fa0b9b0631e1be3
PageCount 6
ParticipantIDs ieee_primary_8243896
PublicationCentury 2000
PublicationDate 2017-Oct.
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationTitle 2017 Chinese Automation Congress (CAC)
PublicationTitleAbbrev CAC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6490672
Snippet Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn...
SourceID ieee
SourceType Publisher
StartPage 6211
SubjectTerms autonomous vehicle
kernel-based least squares policy iteration (KLSPI)
reinforcement learning (RL)
Systems modeling
Title Velocity control in a right-turn across traffic scenario for autonomous vehicles using kernel-based reinforcement learning
URI https://ieeexplore.ieee.org/document/8243896
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1tceFKpRXf3IVL004zjyRLKRZXpYsi3ZU8bmpRpjJOu_Drm6RjRXDjbmYIDCSQcx_nnkPIfWpFkWvn6LBghmaZCf1dYSgP6pYmT61UOppN8MlEzOdy2iIPh1kYRIzkM-yHx9jLt2uzCaWygWDBq7tokzbnxX5W67vzmMjB6HEUqFq83yz75ZcS4WJ88r8fnZLez9wdTA-IckZaWHbJ1wt6wPHBMjS0cliVoCBm1dQDhn-JUAd1pYIeBAR9Jp8Br8HHo6A2dRhb8Pk9bPE1cuAgcN2X8IZVie80wJiFCqOCqonFQmisJJY9Mhs_zUbPtHFMoCuZ1FSZpEiUTLRDl-lMK-NszmzQ9LLaeaxnzuORFj7qs8Ih18ypREvtw5QhDjWm56RTrku8ICBkLjDVucPMZJliSjDOnXbG3xBOG3VJumHbFh97TYxFs2NXf3--JsfhZPYkuBvSqasN3pIjs61Xn9VdPMgdL0GmZQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB1qFXSl0opv78Kl06Z5NJOlFKViLV0U6a7M404tSiox7cKvd-40VgQ37pIwEJiBOfdx7jmMXUdGdBNlLe90Q83jWFN_V2iekrqlTiKTSeXNJtLhUEwm2ajGbjazMIjoyWfYokffyzcLvaRSWVuE5NXd3WLb5JxVTWt99x6DrN277RFZK21VC385pnjAuN__368OWPNn8g5GG0w5ZDXMG-zzGR3kuHAZKmI5zHOQ4PNq7iDDvXiwg7KQpAgBpNDkcuAFuIgU5LKkwQWX4cMKXzwLDojtPoNXLHJ84wRkBgr0GqralwuhMpOYNdn4_m7c6_PKM4HPs6DkUgfdQGaBsmhjFSuprUlCQ6peRlmH9qF1iKSEi_uMsJiq0MpAZcoFKh3sKIyOWD1f5HjMQGSJwEglFmMdxzKUIkxTq6x2d4RVWp6wBm3b9H2tijGtduz0789XbLc_fhpMBw_DxzO2R6e0psSds3pZLPGC7ehVOf8oLv2hfgEAQqmu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Chinese+Automation+Congress+%28CAC%29&rft.atitle=Velocity+control+in+a+right-turn+across+traffic+scenario+for+autonomous+vehicles+using+kernel-based+reinforcement+learning&rft.au=Yuxiang+Zhang&rft.au=Bingzhao+Gao&rft.au=Lulu+Guo&rft.au=Hong+Chen&rft.date=2017-10-01&rft.pub=IEEE&rft.spage=6211&rft.epage=6216&rft_id=info:doi/10.1109%2FCAC.2017.8243896&rft.externalDocID=8243896