Velocity control in a right-turn across traffic scenario for autonomous vehicles using kernel-based reinforcement learning
Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the...
Uloženo v:
| Vydáno v: | 2017 Chinese Automation Congress (CAC) s. 6211 - 6216 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2017
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the kernel-based least squares policy iteration algorithm(KLSPI) is applied. Simulation results show that the proposed method can perform different policy in different cases, which preliminarily verify the rationality. |
|---|---|
| AbstractList | Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the kernel-based least squares policy iteration algorithm(KLSPI) is applied. Simulation results show that the proposed method can perform different policy in different cases, which preliminarily verify the rationality. |
| Author | Yuxiang Zhang Bingzhao Gao Hong Chen Jinghua Zhao Lulu Guo |
| Author_xml | – sequence: 1 surname: Yuxiang Zhang fullname: Yuxiang Zhang organization: State Key Lab. of Automotive Simulation & Control, Jilin Univ., Changchun, China – sequence: 2 surname: Bingzhao Gao fullname: Bingzhao Gao organization: State Key Lab. of Automotive Simulation & Control, Jilin Univ., Changchun, China – sequence: 3 surname: Lulu Guo fullname: Lulu Guo organization: State Key Lab. of Automotive Simulation & Control, Jilin Univ., Changchun, China – sequence: 4 surname: Hong Chen fullname: Hong Chen email: chenh@jlu.edu.cn organization: State Key Lab. of Automotive Simulation & Control, Jilin Univ., Changchun, China – sequence: 5 surname: Jinghua Zhao fullname: Jinghua Zhao organization: Comput. Coll., Jilin Normal Univ., Siping, China |
| BookMark | eNotkL1qwzAURlVohybtXuhyX8DulWQ79hhM_yDQJXQNknyViNpSkeRC-vQ1NNPhg8M3nBW79sETYw8cS86xe-q3fSmQb8pWVLLtmiu24rVsG1mLCm_Z7yeNwbh8BhN8jmEE50FBdMdTLvIcl2FiSAlyVNY6A8mQV9EFsCGCmnPwYQpzgh86OTNSgjk5f4Qvip7GQqtEA0RyftENTeQzjKSiX5w7dmPVmOj-wjXbvzzv-7di9_H63m93heswF8pgg6pDbclWutLK2KEWA9Z1PWjbChQWudAtl93QWtpoYRXqTmMjOXFNcs0e_28dER2-o5tUPB8uNeQfG6NdOQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CAC.2017.8243896 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1538635240 9781538635247 |
| EndPage | 6216 |
| ExternalDocumentID | 8243896 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-ac060a90bfef4b4bacfd52d0555dbf8202f012b8139d8fe7b2fa0b9b0631e1be3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:39 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-ac060a90bfef4b4bacfd52d0555dbf8202f012b8139d8fe7b2fa0b9b0631e1be3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8243896 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Oct. |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct. |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 Chinese Automation Congress (CAC) |
| PublicationTitleAbbrev | CAC |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6490672 |
| Snippet | Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 6211 |
| SubjectTerms | autonomous vehicle kernel-based least squares policy iteration (KLSPI) reinforcement learning (RL) Systems modeling |
| Title | Velocity control in a right-turn across traffic scenario for autonomous vehicles using kernel-based reinforcement learning |
| URI | https://ieeexplore.ieee.org/document/8243896 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1tceFKpRXf3IVL004zjyRLKRZXpYsi3ZU8bmpRpjJOu_Drm6RjRXDjbmYIDCSQcx_nnkPIfWpFkWvn6LBghmaZCf1dYSgP6pYmT61UOppN8MlEzOdy2iIPh1kYRIzkM-yHx9jLt2uzCaWygWDBq7tokzbnxX5W67vzmMjB6HEUqFq83yz75ZcS4WJ88r8fnZLez9wdTA-IckZaWHbJ1wt6wPHBMjS0cliVoCBm1dQDhn-JUAd1pYIeBAR9Jp8Br8HHo6A2dRhb8Pk9bPE1cuAgcN2X8IZVie80wJiFCqOCqonFQmisJJY9Mhs_zUbPtHFMoCuZ1FSZpEiUTLRDl-lMK-NszmzQ9LLaeaxnzuORFj7qs8Ih18ypREvtw5QhDjWm56RTrku8ICBkLjDVucPMZJliSjDOnXbG3xBOG3VJumHbFh97TYxFs2NXf3--JsfhZPYkuBvSqasN3pIjs61Xn9VdPMgdL0GmZQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB1qFXSl0opv78Kl06Z5NJOlFKViLV0U6a7M404tSiox7cKvd-40VgQ37pIwEJiBOfdx7jmMXUdGdBNlLe90Q83jWFN_V2iekrqlTiKTSeXNJtLhUEwm2ajGbjazMIjoyWfYokffyzcLvaRSWVuE5NXd3WLb5JxVTWt99x6DrN277RFZK21VC385pnjAuN__368OWPNn8g5GG0w5ZDXMG-zzGR3kuHAZKmI5zHOQ4PNq7iDDvXiwg7KQpAgBpNDkcuAFuIgU5LKkwQWX4cMKXzwLDojtPoNXLHJ84wRkBgr0GqralwuhMpOYNdn4_m7c6_PKM4HPs6DkUgfdQGaBsmhjFSuprUlCQ6peRlmH9qF1iKSEi_uMsJiq0MpAZcoFKh3sKIyOWD1f5HjMQGSJwEglFmMdxzKUIkxTq6x2d4RVWp6wBm3b9H2tijGtduz0789XbLc_fhpMBw_DxzO2R6e0psSds3pZLPGC7ehVOf8oLv2hfgEAQqmu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Chinese+Automation+Congress+%28CAC%29&rft.atitle=Velocity+control+in+a+right-turn+across+traffic+scenario+for+autonomous+vehicles+using+kernel-based+reinforcement+learning&rft.au=Yuxiang+Zhang&rft.au=Bingzhao+Gao&rft.au=Lulu+Guo&rft.au=Hong+Chen&rft.date=2017-10-01&rft.pub=IEEE&rft.spage=6211&rft.epage=6216&rft_id=info:doi/10.1109%2FCAC.2017.8243896&rft.externalDocID=8243896 |