Learning revised models for planning in adaptive systems

Environment domain models are a key part of the information used by adaptive systems to determine their behaviour. These models can be incomplete or inaccurate. In addition, since adaptive systems generally operate in environments which are subject to change, these models are often also out of date....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2013 35th International Conference on Software Engineering (ICSE) s. 63 - 71
Hlavní autoři: Sykes, Daniel, Corapi, Domenico, Magee, Jeff, Kramer, Jeff, Russo, Alessandra, Inoue, Katsumi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2013
Témata:
ISBN:9781467330732, 1467330736
ISSN:0270-5257
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Environment domain models are a key part of the information used by adaptive systems to determine their behaviour. These models can be incomplete or inaccurate. In addition, since adaptive systems generally operate in environments which are subject to change, these models are often also out of date. To update and correct these models, the system should observe how the environment responds to its actions, and compare these responses to those predicted by the model. In this paper, we use a probabilistic rule learning approach, NoMPRoL, to update models using feedback from the running system in the form of execution traces. NoMPRoL is a technique for nonmonotonic probabilistic rule learning based on a transformation of an inductive logic programming task into an equivalent abductive one. In essence, it exploits consistent observations by finding general rules which explain observations in terms of the conditions under which they occur. The updated models are then used to generate new behaviour with a greater chance of success in the actual environment encountered.
AbstractList Environment domain models are a key part of the information used by adaptive systems to determine their behaviour. These models can be incomplete or inaccurate. In addition, since adaptive systems generally operate in environments which are subject to change, these models are often also out of date. To update and correct these models, the system should observe how the environment responds to its actions, and compare these responses to those predicted by the model. In this paper, we use a probabilistic rule learning approach, NoMPRoL, to update models using feedback from the running system in the form of execution traces. NoMPRoL is a technique for nonmonotonic probabilistic rule learning based on a transformation of an inductive logic programming task into an equivalent abductive one. In essence, it exploits consistent observations by finding general rules which explain observations in terms of the conditions under which they occur. The updated models are then used to generate new behaviour with a greater chance of success in the actual environment encountered.
Author Russo, Alessandra
Corapi, Domenico
Sykes, Daniel
Inoue, Katsumi
Kramer, Jeff
Magee, Jeff
Author_xml – sequence: 1
  givenname: Daniel
  surname: Sykes
  fullname: Sykes, Daniel
  email: Daniel.Sykes@imperial.ac.uk
  organization: Imperial Coll. London, London, UK
– sequence: 2
  givenname: Domenico
  surname: Corapi
  fullname: Corapi, Domenico
  email: Domenico.Corapi@imperial.ac.uk
  organization: Imperial Coll. London, London, UK
– sequence: 3
  givenname: Jeff
  surname: Magee
  fullname: Magee, Jeff
  email: Jeff.Magee@imperial.ac.uk
  organization: Imperial Coll. London, London, UK
– sequence: 4
  givenname: Jeff
  surname: Kramer
  fullname: Kramer, Jeff
  email: Jeff.Kramer@imperial.ac.uk
  organization: Imperial Coll. London, London, UK
– sequence: 5
  givenname: Alessandra
  surname: Russo
  fullname: Russo, Alessandra
  email: Alessandra.Russo@imperial.ac.uk
  organization: Imperial Coll. London, London, UK
– sequence: 6
  givenname: Katsumi
  surname: Inoue
  fullname: Inoue, Katsumi
  email: inoue@nii.ac.jp
  organization: Nat. Inst. of Inf., Tokyo, Japan
BookMark eNo1j81Kw0AUhUesYFvzAOJmXiDxzn-ylFBrIeDC7sskc0dGkknIhELfXtG6OBw-DnxwNmQVx4iEPDIoGIPq-VB_7AoOTBRag1aK35ANk9oIAUbDLckqU_6z4CuyBm4gV1yZe5Kl9AUAjFU_MWtSNmjnGOInnfEcEjo6jA77RP0406m38XcLkVpnpyWckaZLWnBID-TO2z5hdu0tOb7ujvVb3rzvD_VLk4cKlty2ElFWyD2zldBcoTCtd61V0mkn0GpelszojjHVmdKjd84Ck8aA7WSHYkue_rQBEU_THAY7X07X3-IbBUJL2g
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICSE.2013.6606552
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1467330760
9781467330763
EndPage 71
ExternalDocumentID 6606552
Genre orig-research
GroupedDBID -~X
.4S
.DC
123
23M
29O
5VS
6IE
6IF
6IH
6IK
6IL
6IM
6IN
8US
AAJGR
AAWTH
ABLEC
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
APO
ARCSS
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
EDO
FEDTE
I-F
I07
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
XOL
ID FETCH-LOGICAL-i90t-ab4ee49e2f1a93625e37bfdba54d6d3ea6288176c115c78fefdda014770ac4ce3
IEDL.DBID RIE
ISBN 9781467330732
1467330736
ISSN 0270-5257
IngestDate Wed Aug 27 04:28:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-ab4ee49e2f1a93625e37bfdba54d6d3ea6288176c115c78fefdda014770ac4ce3
PageCount 9
ParticipantIDs ieee_primary_6606552
PublicationCentury 2000
PublicationDate 2013-May
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-May
PublicationDecade 2010
PublicationTitle 2013 35th International Conference on Software Engineering (ICSE)
PublicationTitleAbbrev ICSE
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001190117
ssj0006499
ssib016117691
Score 2.039301
Snippet Environment domain models are a key part of the information used by adaptive systems to determine their behaviour. These models can be incomplete or...
SourceID ieee
SourceType Publisher
StartPage 63
SubjectTerms Adaptation models
Adaptive systems
Computational modeling
feedback
machine learning
Planning
Probabilistic logic
Robot sensing systems
runtime model
software architecture
Title Learning revised models for planning in adaptive systems
URI https://ieeexplore.ieee.org/document/6606552
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b8IwELUo6tCJtlD1Wx461pDEji-ZEahdEFIZ2NAlvlQsARHo769tHKpKXbolWZJcHL939t17jL2YzJKMQoLAJNZCJYQiS9NMkFZaIilEMt5sAmazbLnM5x32euqFISJffEZDd-j38s2mPLilspG2bDtN7YR7BgDHXq127FjiEkOr--LXVxzSxafkyyKv95K0WVgknAKob_LSIN0Y1632UzhPwvZnHOWj9_HHxFWAyWG4-y8bFo9C097_nv-SDX7a-fj8BFRXrEP1Neu1fg48_N59lgWx1U_uan8bMtz75DTcElu-De5GfF1zNLh10yQ_6kA3A7aYThbjNxGcFcQ6j_YCC0WkckqqGHOLYClJKCpTYKqMNpLQeRDbcJaWLpaQVVQZgzaXAoiwVCXJG9atNzXdMm5fJ6_Qpl2AqCRRFoEBSwNLMLEpInPH-i4Oq-1RO2MVQnD_9-UHdpF4uwlXUPjIuvvdgZ7Yefm1Xze7Z__BvwGDUqNF
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b8IwELUQrdROtIWq3_XQsYYktuNkRiBQKUIqAxu6xJeKJSAC_f21jUNVqUu3JEvki-P3zr57j5AXnRiSkXHFIApjJiIElkiZMIxFzAEFAGpnNqGm02SxSGcN8nrshUFEV3yGXXvpzvL1Ot_brbJebNi2lGbBPZFCROGhW6uePYa6hKpWfnE7LBbrwmP6ZbDXuUmaPCxgVgPUtXnFittZHtfqT_4-8gegYZD2xv2Pga0B413__l9GLA6Hhq3_jeCCdH4a-ujsCFWXpIHlFWnVjg7U_-Btkni51U9qq38r1NQ55VTUUFu68f5GdFVS0LCxCyU9KEFXHTIfDub9EfPeCmyVBjsGmUAUKUZFCKnBMIlcZYXOQAoda45gXYhNOHNDGHOVFFhoDSabUiqAXOTIr0mzXJd4Q6gZTlqASbwUgOCISaC0MkQwVzrUWaBvSdvGYbk5qGcsfQju_n78TM5G8_fJcjKevt2T88iZT9jywgfS3G33-EhO86_dqto-uY__DTnqpow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+35th+International+Conference+on+Software+Engineering+%28ICSE%29&rft.atitle=Learning+revised+models+for+planning+in+adaptive+systems&rft.au=Sykes%2C+Daniel&rft.au=Corapi%2C+Domenico&rft.au=Magee%2C+Jeff&rft.au=Kramer%2C+Jeff&rft.date=2013-05-01&rft.pub=IEEE&rft.isbn=9781467330732&rft.issn=0270-5257&rft.spage=63&rft.epage=71&rft_id=info:doi/10.1109%2FICSE.2013.6606552&rft.externalDocID=6606552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-5257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-5257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-5257&client=summon