A constrained forward-backward algorithm for image recovery problems
In the solution of inverse problems, the objective is often to minimize the sum of two convex functions f and g subject to convex constraints. Recently, many works have been devoted to this problem in the unconstrained case, when f is possibly non-smooth and g is differentiable with a Lipschitz-cont...
Uloženo v:
| Vydáno v: | Proceedings of the ... European Signal Processing Conference (EUSIPCO) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2008
|
| Témata: | |
| ISSN: | 2219-5491, 2219-5491 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the solution of inverse problems, the objective is often to minimize the sum of two convex functions f and g subject to convex constraints. Recently, many works have been devoted to this problem in the unconstrained case, when f is possibly non-smooth and g is differentiable with a Lipschitz-continuous gradient. The use of a non-smooth penalizing function arises in particular in wavelet regularization techniques in connection with sparsity issues. In this paper, we propose a modification of the standard forward-backward algorithm, which allows us to minimize f + g over a convex constraint set C. The effectiveness of the proposed approach is illustrated in an image restoration problem involving signal-dependent noise. |
|---|---|
| ISSN: | 2219-5491 2219-5491 |