EM Algorithm for Non-Data-Aided SNR Estimation of Linearly-Modulated Signals over SIMO Channels

In this paper, we address the problem of non-data-aided SNR estimation in wireless SIMO channels. We derive the per-antenna ML SNR estimator using the expectation-maximization (EM) algorithm under constant channels and additive white Gaussian noise (AWGN). The new method is valid for any arbitrary c...

Full description

Saved in:
Bibliographic Details
Published in:GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference pp. 1 - 6
Main Authors: Boujelben, M.A., Bellili, F., Affes, S., Stephenne, A.
Format: Conference Proceeding
Language:English
Published: IEEE 01.11.2009
Subjects:
ISBN:9781424441488, 142444148X
ISSN:1930-529X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we address the problem of non-data-aided SNR estimation in wireless SIMO channels. We derive the per-antenna ML SNR estimator using the expectation-maximization (EM) algorithm under constant channels and additive white Gaussian noise (AWGN). The new method is valid for any arbitrary constellation. It is NDA and, therefore, does not impinge on the hole throughput of the system. We obtain two non linear vector equations which are tackled by a less complex approach based on the EM algorithm. The noise components are assumed to be spatially uncorrelated over all the antenna elements and temporally white with equal power. Besides, in order to evaluate our EM-ML SNR estimator, we derive the Cramer-Rao lower bound (CRLB) in the DA case. Monte Carlo simulations show, that our new estimator offers, a substantial performance improvement over the SISO ML SNR estimator due to the optimal usage of the mutual information between the antenna branches, and that it reaches the derived DA CRLBs. To the best of our knowledge, we are the first to derive the ML per-antenna SNR estimators as well as the CRLBs in the NDA and the DA case, respectively, both over SIMO channels.
AbstractList In this paper, we address the problem of non-data-aided SNR estimation in wireless SIMO channels. We derive the per-antenna ML SNR estimator using the expectation-maximization (EM) algorithm under constant channels and additive white Gaussian noise (AWGN). The new method is valid for any arbitrary constellation. It is NDA and, therefore, does not impinge on the hole throughput of the system. We obtain two non linear vector equations which are tackled by a less complex approach based on the EM algorithm. The noise components are assumed to be spatially uncorrelated over all the antenna elements and temporally white with equal power. Besides, in order to evaluate our EM-ML SNR estimator, we derive the Cramer-Rao lower bound (CRLB) in the DA case. Monte Carlo simulations show, that our new estimator offers, a substantial performance improvement over the SISO ML SNR estimator due to the optimal usage of the mutual information between the antenna branches, and that it reaches the derived DA CRLBs. To the best of our knowledge, we are the first to derive the ML per-antenna SNR estimators as well as the CRLBs in the NDA and the DA case, respectively, both over SIMO channels.
Author Affes, S.
Boujelben, M.A.
Bellili, F.
Stephenne, A.
Author_xml – sequence: 1
  givenname: M.A.
  surname: Boujelben
  fullname: Boujelben, M.A.
  organization: INRS-EMT, Montreal, QC, Canada
– sequence: 2
  givenname: F.
  surname: Bellili
  fullname: Bellili, F.
  organization: INRS-EMT, Montreal, QC, Canada
– sequence: 3
  givenname: S.
  surname: Affes
  fullname: Affes, S.
  organization: INRS-EMT, Montreal, QC, Canada
– sequence: 4
  givenname: A.
  surname: Stephenne
  fullname: Stephenne, A.
  organization: INRS-EMT, Montreal, QC, Canada
BookMark eNotkEtuwjAYhC2VSgXKCdj4AqZ-JbGXKKWAlBCpsOgO_YltcBXsKkkrcftSldUsZvRpZiZoFGKwCM0ZXTBG9cu6qPKqXHBK9SKRPOEsfUAznSkmuZSSSaVGaMy0oCTh-uMJTfr-k9JEqoSN0XFV4mV7ip0fzhfsYod3MZBXGIAsvbEG73fveNUP_gKDjwFHhwsfLHTtlZTRfLcw_IX8KUDb4_hjO7zflhXOzxCCbftn9Ohujp3ddYoOb6tDviFFtd7my4J4TQcCNM1q2zhXK-Cg6lQ4Bk7qWqpGc36bAE433IEx3KY0E6ymDc2cqpkVxggxRfN_rLfWHr-6W93uerzfIX4BqwhWig
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/GLOCOM.2009.5425216
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 6
ExternalDocumentID 5425216
Genre orig-research
GroupedDBID 29I
6IE
6IH
6IK
6IM
AAJGR
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i90t-a067becffb8a2a8b63f1af49b48c922488af9c2fadd2e60731b0c07f8b1e3dd33
IEDL.DBID RIE
ISBN 9781424441488
142444148X
ISSN 1930-529X
IngestDate Wed Aug 27 03:07:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-a067becffb8a2a8b63f1af49b48c922488af9c2fadd2e60731b0c07f8b1e3dd33
PageCount 6
ParticipantIDs ieee_primary_5425216
PublicationCentury 2000
PublicationDate 2009-Nov.
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-Nov.
PublicationDecade 2000
PublicationTitle GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference
PublicationTitleAbbrev GLOCOM
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0054851
ssj0001968847
Score 1.494482
Snippet In this paper, we address the problem of non-data-aided SNR estimation in wireless SIMO channels. We derive the per-antenna ML SNR estimator using the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Additive white noise
Antenna accessories
AWGN
Equations
Gaussian noise
Maximum likelihood estimation
Mutual information
Signal to noise ratio
Throughput
Vectors
Title EM Algorithm for Non-Data-Aided SNR Estimation of Linearly-Modulated Signals over SIMO Channels
URI https://ieeexplore.ieee.org/document/5425216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-AeNCLH2D8Tg8erazb2NojQVATBkQ4cCPt1uIS3QwO_35fuwGaePHWbd269DXvo6-_30PollOpOxKiEx37AfEFl4RpqQmPQcSCQlNYyvxhOBqx-ZxPauhui4VRStnDZ-reNG0uP8njtdkqa3dggbk0qKN6GAYlVmu3n8IDZjN-pRYGR9yWXgT_xIFgi883oC4f_P_5huupumYVHRF1ePtxOO6No5LIshrvV-EVa3cGh__74yPU2gH48GRrmo5RTWUn6OAH92ATLfoR7r4t81VavL5jcF3xKM_IgygE6aaJSvB09IL7oABKbCPONYa4VRk-ZBLlian6ZTqlS0PAjM1BUDx9jsbYwBUyMLgtNBv0Z70nUlVbICl3CiLAbIE8tZZMuILJwNNUaJ9Ln8Uc7DxjQvPY1aAPXRWAYqDSiZ1QM0mVlySed4oaWZ6pM4QdkK9kgfQTj_qgUQT0g0_D-64PD-g5apqZWnyUfBqLapIu_r59ifZtBsfi_65Qo1it1TXai7-K9HN1YxfBN7URrEU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT4MwFG7mJVFfvM14tw8-WkeBsfbRzHmJwBbdA29LC-0kUTCT-fs9LTg18cW3AoWSnuZcevp9B6FzTqXuSohOdOoHxBdcEqalJjwFEQsKTWEp88NeHLMk4aMWulhgYZRS9vCZujRNm8vPynRutso6XVhgLg2W0IqpnNWgtb53VHjAbM6v1sPgitvii-ChOBBu8eQL1uVDBJB8sT0116whJKIO79yGw_4wqqksmxF_lV6xludm83__vIXa3xA-PFoYp23UUsUO2vjBPriLJoMIX71My1lePb9icF5xXBbkWlSCXOWZyvBT_IgHoAJqdCMuNYbIVRlGZBKVman7ZTrlU0PBjM1RUPx0Hw2xASwUYHLbaHwzGPfvSFNvgeTcqYgAwwUS1Voy4QomA09ToX0ufZZysPSMCc1TV4NGdFUAqoFKJ3V6mkmqvCzzvD20XJSF2kfYAQlLFkg_86gPOkVAP_g0vO_68IAeoF0zU5O3mlFj0kzS4d-3z9Da3TgKJ-F9_HCE1m0-x6IBj9FyNZurE7SaflT5--zULohP5Iavjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=GLOBECOM+2009+-+2009+IEEE+Global+Telecommunications+Conference&rft.atitle=EM+Algorithm+for+Non-Data-Aided+SNR+Estimation+of+Linearly-Modulated+Signals+over+SIMO+Channels&rft.au=Boujelben%2C+M.A.&rft.au=Bellili%2C+F.&rft.au=Affes%2C+S.&rft.au=Stephenne%2C+A.&rft.date=2009-11-01&rft.pub=IEEE&rft.isbn=9781424441488&rft.issn=1930-529X&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FGLOCOM.2009.5425216&rft.externalDocID=5425216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1930-529X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1930-529X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1930-529X&client=summon