EM Algorithm for Non-Data-Aided SNR Estimation of Linearly-Modulated Signals over SIMO Channels
In this paper, we address the problem of non-data-aided SNR estimation in wireless SIMO channels. We derive the per-antenna ML SNR estimator using the expectation-maximization (EM) algorithm under constant channels and additive white Gaussian noise (AWGN). The new method is valid for any arbitrary c...
Saved in:
| Published in: | GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference pp. 1 - 6 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.11.2009
|
| Subjects: | |
| ISBN: | 9781424441488, 142444148X |
| ISSN: | 1930-529X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we address the problem of non-data-aided SNR estimation in wireless SIMO channels. We derive the per-antenna ML SNR estimator using the expectation-maximization (EM) algorithm under constant channels and additive white Gaussian noise (AWGN). The new method is valid for any arbitrary constellation. It is NDA and, therefore, does not impinge on the hole throughput of the system. We obtain two non linear vector equations which are tackled by a less complex approach based on the EM algorithm. The noise components are assumed to be spatially uncorrelated over all the antenna elements and temporally white with equal power. Besides, in order to evaluate our EM-ML SNR estimator, we derive the Cramer-Rao lower bound (CRLB) in the DA case. Monte Carlo simulations show, that our new estimator offers, a substantial performance improvement over the SISO ML SNR estimator due to the optimal usage of the mutual information between the antenna branches, and that it reaches the derived DA CRLBs. To the best of our knowledge, we are the first to derive the ML per-antenna SNR estimators as well as the CRLBs in the NDA and the DA case, respectively, both over SIMO channels. |
|---|---|
| AbstractList | In this paper, we address the problem of non-data-aided SNR estimation in wireless SIMO channels. We derive the per-antenna ML SNR estimator using the expectation-maximization (EM) algorithm under constant channels and additive white Gaussian noise (AWGN). The new method is valid for any arbitrary constellation. It is NDA and, therefore, does not impinge on the hole throughput of the system. We obtain two non linear vector equations which are tackled by a less complex approach based on the EM algorithm. The noise components are assumed to be spatially uncorrelated over all the antenna elements and temporally white with equal power. Besides, in order to evaluate our EM-ML SNR estimator, we derive the Cramer-Rao lower bound (CRLB) in the DA case. Monte Carlo simulations show, that our new estimator offers, a substantial performance improvement over the SISO ML SNR estimator due to the optimal usage of the mutual information between the antenna branches, and that it reaches the derived DA CRLBs. To the best of our knowledge, we are the first to derive the ML per-antenna SNR estimators as well as the CRLBs in the NDA and the DA case, respectively, both over SIMO channels. |
| Author | Affes, S. Boujelben, M.A. Bellili, F. Stephenne, A. |
| Author_xml | – sequence: 1 givenname: M.A. surname: Boujelben fullname: Boujelben, M.A. organization: INRS-EMT, Montreal, QC, Canada – sequence: 2 givenname: F. surname: Bellili fullname: Bellili, F. organization: INRS-EMT, Montreal, QC, Canada – sequence: 3 givenname: S. surname: Affes fullname: Affes, S. organization: INRS-EMT, Montreal, QC, Canada – sequence: 4 givenname: A. surname: Stephenne fullname: Stephenne, A. organization: INRS-EMT, Montreal, QC, Canada |
| BookMark | eNotkEtuwjAYhC2VSgXKCdj4AqZ-JbGXKKWAlBCpsOgO_YltcBXsKkkrcftSldUsZvRpZiZoFGKwCM0ZXTBG9cu6qPKqXHBK9SKRPOEsfUAznSkmuZSSSaVGaMy0oCTh-uMJTfr-k9JEqoSN0XFV4mV7ip0fzhfsYod3MZBXGIAsvbEG73fveNUP_gKDjwFHhwsfLHTtlZTRfLcw_IX8KUDb4_hjO7zflhXOzxCCbftn9Ohujp3ddYoOb6tDviFFtd7my4J4TQcCNM1q2zhXK-Cg6lQ4Bk7qWqpGc36bAE433IEx3KY0E6ymDc2cqpkVxggxRfN_rLfWHr-6W93uerzfIX4BqwhWig |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/GLOCOM.2009.5425216 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 6 |
| ExternalDocumentID | 5425216 |
| Genre | orig-research |
| GroupedDBID | 29I 6IE 6IH 6IK 6IM AAJGR ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-i90t-a067becffb8a2a8b63f1af49b48c922488af9c2fadd2e60731b0c07f8b1e3dd33 |
| IEDL.DBID | RIE |
| ISBN | 9781424441488 142444148X |
| ISSN | 1930-529X |
| IngestDate | Wed Aug 27 03:07:33 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-a067becffb8a2a8b63f1af49b48c922488af9c2fadd2e60731b0c07f8b1e3dd33 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_5425216 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-Nov. |
| PublicationDateYYYYMMDD | 2009-11-01 |
| PublicationDate_xml | – month: 11 year: 2009 text: 2009-Nov. |
| PublicationDecade | 2000 |
| PublicationTitle | GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference |
| PublicationTitleAbbrev | GLOCOM |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0054851 ssj0001968847 |
| Score | 1.494482 |
| Snippet | In this paper, we address the problem of non-data-aided SNR estimation in wireless SIMO channels. We derive the per-antenna ML SNR estimator using the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Additive white noise Antenna accessories AWGN Equations Gaussian noise Maximum likelihood estimation Mutual information Signal to noise ratio Throughput Vectors |
| Title | EM Algorithm for Non-Data-Aided SNR Estimation of Linearly-Modulated Signals over SIMO Channels |
| URI | https://ieeexplore.ieee.org/document/5425216 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-AeNCLH2D8Tg8erazb2NojQVATBkQ4cCPt1uIS3QwO_35fuwGaePHWbd269DXvo6-_30PollOpOxKiEx37AfEFl4RpqQmPQcSCQlNYyvxhOBqx-ZxPauhui4VRStnDZ-reNG0uP8njtdkqa3dggbk0qKN6GAYlVmu3n8IDZjN-pRYGR9yWXgT_xIFgi883oC4f_P_5huupumYVHRF1ePtxOO6No5LIshrvV-EVa3cGh__74yPU2gH48GRrmo5RTWUn6OAH92ATLfoR7r4t81VavL5jcF3xKM_IgygE6aaJSvB09IL7oABKbCPONYa4VRk-ZBLlian6ZTqlS0PAjM1BUDx9jsbYwBUyMLgtNBv0Z70nUlVbICl3CiLAbIE8tZZMuILJwNNUaJ9Ln8Uc7DxjQvPY1aAPXRWAYqDSiZ1QM0mVlySed4oaWZ6pM4QdkK9kgfQTj_qgUQT0g0_D-64PD-g5apqZWnyUfBqLapIu_r59ifZtBsfi_65Qo1it1TXai7-K9HN1YxfBN7URrEU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT4MwFG7mJVFfvM14tw8-WkeBsfbRzHmJwBbdA29LC-0kUTCT-fs9LTg18cW3AoWSnuZcevp9B6FzTqXuSohOdOoHxBdcEqalJjwFEQsKTWEp88NeHLMk4aMWulhgYZRS9vCZujRNm8vPynRutso6XVhgLg2W0IqpnNWgtb53VHjAbM6v1sPgitvii-ChOBBu8eQL1uVDBJB8sT0116whJKIO79yGw_4wqqksmxF_lV6xludm83__vIXa3xA-PFoYp23UUsUO2vjBPriLJoMIX71My1lePb9icF5xXBbkWlSCXOWZyvBT_IgHoAJqdCMuNYbIVRlGZBKVman7ZTrlU0PBjM1RUPx0Hw2xASwUYHLbaHwzGPfvSFNvgeTcqYgAwwUS1Voy4QomA09ToX0ufZZysPSMCc1TV4NGdFUAqoFKJ3V6mkmqvCzzvD20XJSF2kfYAQlLFkg_86gPOkVAP_g0vO_68IAeoF0zU5O3mlFj0kzS4d-3z9Da3TgKJ-F9_HCE1m0-x6IBj9FyNZurE7SaflT5--zULohP5Iavjg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=GLOBECOM+2009+-+2009+IEEE+Global+Telecommunications+Conference&rft.atitle=EM+Algorithm+for+Non-Data-Aided+SNR+Estimation+of+Linearly-Modulated+Signals+over+SIMO+Channels&rft.au=Boujelben%2C+M.A.&rft.au=Bellili%2C+F.&rft.au=Affes%2C+S.&rft.au=Stephenne%2C+A.&rft.date=2009-11-01&rft.pub=IEEE&rft.isbn=9781424441488&rft.issn=1930-529X&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FGLOCOM.2009.5425216&rft.externalDocID=5425216 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1930-529X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1930-529X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1930-529X&client=summon |

