Solving ambiguity for sparse array via particle swarm optimization

Sparse linear arrays are subject to manifold ambiguity in genera. A method to solve the manifold ambiguity of uncorrelated sources for sparse array is proposed in this paper. The method is consisted of two steps. The first step is to obtain all the directions of arrivals (DOAs) by traditional MUltip...

Full description

Saved in:
Bibliographic Details
Published in:2011 International Conference on Computational Problem-Solving pp. 316 - 319
Main Authors: Ziyuan He, Zhiqin Zhao, Kai Yang, Jun Ouyang
Format: Conference Proceeding
Language:English
Published: IEEE 01.10.2011
Subjects:
ISBN:9781457706028, 1457706024
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sparse linear arrays are subject to manifold ambiguity in genera. A method to solve the manifold ambiguity of uncorrelated sources for sparse array is proposed in this paper. The method is consisted of two steps. The first step is to obtain all the directions of arrivals (DOAs) by traditional MUltiple SIgnal Classification (MUSIC) algorithm, including true and spurious DOAs. The second step is to estimate the power values of all the DOAs by substituting all the DOAs to a cost function. The particle warm optimization (PSO) are applied to estimate the power values. The power values of spurious DOAs are very small or tends to zero compared with the values of the true DOAs. Simulation results demonstrate the effectiveness and the feasibility of the method.
AbstractList Sparse linear arrays are subject to manifold ambiguity in genera. A method to solve the manifold ambiguity of uncorrelated sources for sparse array is proposed in this paper. The method is consisted of two steps. The first step is to obtain all the directions of arrivals (DOAs) by traditional MUltiple SIgnal Classification (MUSIC) algorithm, including true and spurious DOAs. The second step is to estimate the power values of all the DOAs by substituting all the DOAs to a cost function. The particle warm optimization (PSO) are applied to estimate the power values. The power values of spurious DOAs are very small or tends to zero compared with the values of the true DOAs. Simulation results demonstrate the effectiveness and the feasibility of the method.
Author Kai Yang
Ziyuan He
Zhiqin Zhao
Jun Ouyang
Author_xml – sequence: 1
  surname: Ziyuan He
  fullname: Ziyuan He
  organization: Sch. of Electron. Eng., Univ. of Electron. Sci. & Technol. of China (UESTC), Chengdu, China
– sequence: 2
  surname: Zhiqin Zhao
  fullname: Zhiqin Zhao
  organization: Sch. of Electron. Eng., Univ. of Electron. Sci. & Technol. of China (UESTC), Chengdu, China
– sequence: 3
  surname: Kai Yang
  fullname: Kai Yang
  organization: Sch. of Electron. Eng., Univ. of Electron. Sci. & Technol. of China (UESTC), Chengdu, China
– sequence: 4
  surname: Jun Ouyang
  fullname: Jun Ouyang
  organization: Sch. of Electron. Eng., Univ. of Electron. Sci. & Technol. of China (UESTC), Chengdu, China
BookMark eNpVj81KxDAUhSMqqGNfQDd5gak3bZomSy2ODgwozOyH23gzRPpHUkfq01twNp7N4fsWB84Nu-j6jhi7E5AKAeZhXVXv2zQDIVIFJstKc8YSU2ohi7IENfvzf5zpK5bE-AlzlNJaymv2tO2bo-8OHNvaH778OHHXBx4HDJE4hoATP3rkM4_eNsTjN4aW98PoW_-Do--7W3bpsImUnHrBdqvnXfW63Ly9rKvHzdIbGJeGyGhtZG2tc66AnHLzIS1KoYUFV4PWGkEVBhSqTGCNorRUGEdCuqIw-YLd_816ItoPwbcYpv3peP4LqLVOmg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCPS.2011.6092279
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781457706011
1457706008
9781457706035
1457706032
9781457706004
1457706016
EndPage 319
ExternalDocumentID 6092279
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-9ee98894bccfff503e39d4ca4181c0fb0888a065906a621aba17ce59fe14f5593
IEDL.DBID RIE
ISBN 9781457706028
1457706024
IngestDate Wed Aug 27 03:07:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-9ee98894bccfff503e39d4ca4181c0fb0888a065906a621aba17ce59fe14f5593
PageCount 4
ParticipantIDs ieee_primary_6092279
PublicationCentury 2000
PublicationDate 2011-Oct.
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-Oct.
PublicationDecade 2010
PublicationTitle 2011 International Conference on Computational Problem-Solving
PublicationTitleAbbrev ICCPS
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000668844
Score 1.4738495
Snippet Sparse linear arrays are subject to manifold ambiguity in genera. A method to solve the manifold ambiguity of uncorrelated sources for sparse array is proposed...
SourceID ieee
SourceType Publisher
StartPage 316
SubjectTerms Arrays
Direction of arrival estimation
Estimation
Manifolds
Multiple signal classification
Signal processing algorithms
Title Solving ambiguity for sparse array via particle swarm optimization
URI https://ieeexplore.ieee.org/document/6092279
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbwIhECZqeuipbbTpOxx6LBVclse1pqa9GBM9eDPADs0m1TXrK_33hXW1adJLb8CBQCDzzQx83yD0qDOmlLeSQCI94eA8UcoIohMb4dVmCfVVsQk5HKrpVI8a6OnIhQGA6vMZPMdm9ZafFW4TU2VdQXUUvGuippRiz9U65lMCdCrFecXdSmXUhOnxg6RT3VcH0gzV3fd-fzTeK3jWs_4qr1Khy-Dsf-s6R50fmh4eHQHoAjVg0UYv4-IzJgmwmdv8YxOcbBz8UhwMR7kCbMrSfOFtbvCyvjN4tTPlHBfBdMxrTmYHTQavk_4bqQslkFzTNdEAWinNrXPe-5QmkOiMO8MDejvqbTAkysT3UyqM6DFjDZORfeWBcR8iiuQStRbFAq4QFpBSn1jDsxBnOA_WMmWjF-UZuCwV16gdtz9b7qUwZvXOb_4evkWnvcOXOXaHWutyA_foxG3X-ap8qM7vG7NlmYM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qFfSk0orf5uDRtdnd7G5ytSgt1lJoD72VJDuRBdst2w_x35tstxXBi7ckh5CQMG9mkvcG4F6kPudGJR6GifEYauNxLmNPhMrBq0pDaspiE0m_z8djMajBw44Lg4jl5zN8dM3yLT_N9cqlyloxFU7wbg_2I8YCumFr7TIqFjw5Z6xkb0WJU4UJ2FbUqerzLW2Gila33R4MNxqe1by_CqyU-PJy_L-VnUDzh6hHBjsIOoUazhrwNMw_XJqAyKnK3lfWzSbWMyXWdBQLJLIo5BdZZ5LMq1tDFp-ymJLcGo9pxcpswujledTueFWpBC8TdOkJRMG5YEprY0xEQwxFyrRkFr81NcqaEi7dCyqNZRz4Ukk_cfwrgz4zNqYIz6A-y2d4DiTGiJpQSZbaSEMbVMrnyvlRxkedRvEFNNz2J_ONGMak2vnl38N3cNgZvfUmvW7_9QqOgu0HOv8a6stihTdwoNfLbFHclmf5DePXnMo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Computational+Problem-Solving&rft.atitle=Solving+ambiguity+for+sparse+array+via+particle+swarm+optimization&rft.au=Ziyuan+He&rft.au=Zhiqin+Zhao&rft.au=Kai+Yang&rft.au=Jun+Ouyang&rft.date=2011-10-01&rft.pub=IEEE&rft.isbn=9781457706028&rft.spage=316&rft.epage=319&rft_id=info:doi/10.1109%2FICCPS.2011.6092279&rft.externalDocID=6092279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457706028/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457706028/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457706028/sc.gif&client=summon&freeimage=true