Solving ambiguity for sparse array via particle swarm optimization
Sparse linear arrays are subject to manifold ambiguity in genera. A method to solve the manifold ambiguity of uncorrelated sources for sparse array is proposed in this paper. The method is consisted of two steps. The first step is to obtain all the directions of arrivals (DOAs) by traditional MUltip...
Uložené v:
| Vydané v: | 2011 International Conference on Computational Problem-Solving s. 316 - 319 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2011
|
| Predmet: | |
| ISBN: | 9781457706028, 1457706024 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Sparse linear arrays are subject to manifold ambiguity in genera. A method to solve the manifold ambiguity of uncorrelated sources for sparse array is proposed in this paper. The method is consisted of two steps. The first step is to obtain all the directions of arrivals (DOAs) by traditional MUltiple SIgnal Classification (MUSIC) algorithm, including true and spurious DOAs. The second step is to estimate the power values of all the DOAs by substituting all the DOAs to a cost function. The particle warm optimization (PSO) are applied to estimate the power values. The power values of spurious DOAs are very small or tends to zero compared with the values of the true DOAs. Simulation results demonstrate the effectiveness and the feasibility of the method. |
|---|---|
| ISBN: | 9781457706028 1457706024 |
| DOI: | 10.1109/ICCPS.2011.6092279 |

