Robust outdoor text detection using text intensity and shape features

Recognizing texts from camera images is a known hard problem because of the difficulties in text segmentation from the varied and complicated backgrounds. In this paper, we propose an algorithm that employs two novel filters and a basic component-based text detection framework. The framework uses th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2008 19th International Conference on Pattern Recognition S. 1 - 4
Hauptverfasser: Zongyi Liu, Sarkar, S.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2008
Schlagworte:
ISBN:9781424421749, 1424421748
ISSN:1051-4651
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recognizing texts from camera images is a known hard problem because of the difficulties in text segmentation from the varied and complicated backgrounds. In this paper, we propose an algorithm that employs two novel filters and a basic component-based text detection framework. The framework uses the Niblack algorithm to threshold images and groups components into regions with commonly used geometry features. The intensity filter considers the overlap between the intensity histogram of a component and that of its adjoining area. For non-text regions, we have found that this overlap is large, and so we can prune out components with large values of this measure. The shape filter, on the other hand, deletes regions whose constituent components come from a same object, as most words consist of different characters. The proposed method is evaluated with the text locating database with 249 images used in the ICDAR2003 robust reading competition. The result shows that the algorithm is robust to both indoor images and outdoor images, even for the images of complex background, which usually is a hard factor to overcome for traditional component-based algorithms. In terms of performance statistics, we tested the algorithm on the ICDAR 2003 challenge experiment, and the algorithm achieves 66% precision rate (p), 46% recall rate (r), and 54% the combined rate ( f ), which is the best reported in the literature on this dataset.
AbstractList Recognizing texts from camera images is a known hard problem because of the difficulties in text segmentation from the varied and complicated backgrounds. In this paper, we propose an algorithm that employs two novel filters and a basic component-based text detection framework. The framework uses the Niblack algorithm to threshold images and groups components into regions with commonly used geometry features. The intensity filter considers the overlap between the intensity histogram of a component and that of its adjoining area. For non-text regions, we have found that this overlap is large, and so we can prune out components with large values of this measure. The shape filter, on the other hand, deletes regions whose constituent components come from a same object, as most words consist of different characters. The proposed method is evaluated with the text locating database with 249 images used in the ICDAR2003 robust reading competition. The result shows that the algorithm is robust to both indoor images and outdoor images, even for the images of complex background, which usually is a hard factor to overcome for traditional component-based algorithms. In terms of performance statistics, we tested the algorithm on the ICDAR 2003 challenge experiment, and the algorithm achieves 66% precision rate (p), 46% recall rate (r), and 54% the combined rate ( f ), which is the best reported in the literature on this dataset.
Author Zongyi Liu
Sarkar, S.
Author_xml – sequence: 1
  surname: Zongyi Liu
  fullname: Zongyi Liu
  organization: Amazon.com, Seattle, WA
– sequence: 2
  givenname: S.
  surname: Sarkar
  fullname: Sarkar, S.
  organization: Dept. Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL
BookMark eNpVkM1KAzEUhSNWsK19AHGTF5gxNz8zyVJKrYWCUrovyeRGI5opkwzYt1doN64O51sc-M6MTFKfkJB7YDUAM4-b5duu5ozpWrYNSMGvyMK0GiSXkkOrmut_XZoJmQJTUMlGwS2Z5fzJGGdC6SlZ7Xo35kL7sfi-H2jBn0I9FuxK7BMdc0zvZxhTwZRjOVGbPM0f9og0oC3jgPmO3AT7lXFxyTnZP6_2y5dq-7reLJ-2VTSsVMZhQMWVE9CJYBrLlOQqCHBCW2k8euDMOuM6rtBr3gX5p6utkahUZ4SYk4fzbETEw3GI33Y4HS4niF_twFCF
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR.2008.4761432
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9781424421756
1424421756
EndPage 4
ExternalDocumentID 4761432
Genre orig-research
GroupedDBID 29J
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i90t-9befe525b31c3f96a05425f31b38a49ded120ab9bc25ed82cf41098a94e55c933
IEDL.DBID RIE
ISBN 9781424421749
1424421748
ISSN 1051-4651
IngestDate Wed Aug 27 02:15:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-9befe525b31c3f96a05425f31b38a49ded120ab9bc25ed82cf41098a94e55c933
PageCount 4
ParticipantIDs ieee_primary_4761432
PublicationCentury 2000
PublicationDate 2008-Dec.
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-Dec.
PublicationDecade 2000
PublicationTitle 2008 19th International Conference on Pattern Recognition
PublicationTitleAbbrev ICPR
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020358
ssj0000453625
Score 1.8740383
Snippet Recognizing texts from camera images is a known hard problem because of the difficulties in text segmentation from the varied and complicated backgrounds. In...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Cameras
Filters
Geometry
Histograms
Image databases
Image recognition
Image segmentation
Robustness
Shape
Text recognition
Title Robust outdoor text detection using text intensity and shape features
URI https://ieeexplore.ieee.org/document/4761432
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxQBLoS3iWx4YCU3iOPHNVSuQUFVVFepWxfEZuiRVkyDx73GcpAWJhc32kuj8cXf2e-8IeTAeSHiRBkcrs4IDEUondhV3XERhGkKGlvX-9hrNZmK1gnmHPO65MIhowWf4VDXtW77KkrK6KhsFJucOmDlwj6IorLla-_sUE5qYs_igs-cyXtPguMmRQu61pK4qBBet1lPTh-a503Nh9DKeL2qIZfO1X2VXrNeZ9v73v2dkeKDv0fneMZ2TDqZ90mvrN9BmO_fJ6Q8xwgGZLDJZ5gXNykJl2Y5WkBCqsLBYrZRWAPn3enBTw96LLxqniuYf8RapRqsQmg_JcjpZjp-dpsiCswG3cECiRu5zybyEaQhjE8L5XDNPMhEHoFB5vhtLkInPUQk_0YGxkoghQM4TYOyCdNMsxUtCFSAEYVUEEk2-HQEobfY0Mi2SSCuXX5FBZaL1tpbRWDfWuf57-IacWGiGRY7ckm6xK_GOHCefxSbf3du5_wZpWKiI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ImqgXFDD-tgePTrZ13dozwUBEQggx3Mi6viqXjbDNxP_ethugiRdvbS9tXtq-99rvex9CD9oDMS9S3FFS7-CAhcKJXUkdF4DpBhOhZb2_jaPJhC0WfNpAjzsuDABY8Bk8mab9y5dZUpqnsl6gc-6A6Av3wChn1Wyt3YuKDk70bbyvtOcSWhHhqM6SQuptaV0mCGfbak91n9cfnp7Le6P-dFaBLOv5fgmvWL_z3Prfik9Rd0_gw9OdazpDDUjbqLVVcMD1gW6jkx_lCDtoMMtEmRc4KwuZZRtsQCFYQmHRWik2EPn3anBVAd-LLxynEucf8RqwAlsjNO-i-fNg3h86tcyCs-Ju4XABCqhPBfESongY6yDOp4p4grA44BKk57ux4CLxKUjmJyrQVmIxD4DShBNyjppplsIFwpIDD0IjAwk64444l0qfaiCKJZGSLr1EHWOi5boqpLGsrXP19_A9OhrOX8fL8Wjyco2OLVDD4khuULPYlHCLDpPPYpVv7uw--AZm1qvR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+19th+International+Conference+on+Pattern+Recognition&rft.atitle=Robust+outdoor+text+detection+using+text+intensity+and+shape+features&rft.au=Zongyi+Liu&rft.au=Sarkar%2C+S.&rft.date=2008-12-01&rft.pub=IEEE&rft.isbn=9781424421749&rft.issn=1051-4651&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICPR.2008.4761432&rft.externalDocID=4761432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-4651&client=summon