Comparative study of maximum power point tracking algorithms for thermoelectric generators
Variations in load and temperature can cause a thermoelectric generator (TEG) to operate at a voltage that does not produce the maximum possible power for a given temperature difference. Therefore a maximum power point tracker (MPPT) is used to force the generator to a voltage that produces maximum...
Saved in:
| Published in: | 2008 Australasian Universities Power Engineering Conference : 14-17 December 2008 pp. 1 - 6 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.12.2008
|
| Subjects: | |
| ISBN: | 9780733427152, 0733427154 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Variations in load and temperature can cause a thermoelectric generator (TEG) to operate at a voltage that does not produce the maximum possible power for a given temperature difference. Therefore a maximum power point tracker (MPPT) is used to force the generator to a voltage that produces maximum power. This paper uses a digital signal processor (DSP) controlled boost converter to assess and compare the performance of several MPPT algorithms when used with a TEG. As a result, the fractional short circuit method has shown promise as a suitable MPPT algorithm for a TEG subjected to steady state conditions. |
|---|---|
| ISBN: | 9780733427152 0733427154 |

