Fast self-tuning weighted measurement fusion Kalman filter for the ARMA signal

For the multisensor single channel autoregressive moving average(ARMA) signal with common disturbance measurement noise and sensor bias, when the model parameters, the sensor bias and the noise variances are all unknown, their consistent estimates are obtained by a multistage fused identification me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2011 IEEE International Conference on Mechatronics and Automation S. 1131 - 1136
Hauptverfasser: Chenjian Ran, Zili Deng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2011
Schlagworte:
ISBN:9781424481132, 1424481139
ISSN:2152-7431
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For the multisensor single channel autoregressive moving average(ARMA) signal with common disturbance measurement noise and sensor bias, when the model parameters, the sensor bias and the noise variances are all unknown, their consistent estimates are obtained by a multistage fused identification method, which includes the recursive extended least squares (RELS) algorithm, correlation method and the Gevers-Wouters algorithm with a dead band. Substituting these estimates into the optimal weighted measurement fusion(WMF) Kalman signal filter, a self-tuning WMF Kalman signal filter with asymptotic global optimality is presented. A fast inversion algorithm of the extended Pei-Radman matrix is presented in order to reduce the computational load. A simulation example verifies the effectiveness of the proposed method.
AbstractList For the multisensor single channel autoregressive moving average(ARMA) signal with common disturbance measurement noise and sensor bias, when the model parameters, the sensor bias and the noise variances are all unknown, their consistent estimates are obtained by a multistage fused identification method, which includes the recursive extended least squares (RELS) algorithm, correlation method and the Gevers-Wouters algorithm with a dead band. Substituting these estimates into the optimal weighted measurement fusion(WMF) Kalman signal filter, a self-tuning WMF Kalman signal filter with asymptotic global optimality is presented. A fast inversion algorithm of the extended Pei-Radman matrix is presented in order to reduce the computational load. A simulation example verifies the effectiveness of the proposed method.
Author Zili Deng
Chenjian Ran
Author_xml – sequence: 1
  surname: Chenjian Ran
  fullname: Chenjian Ran
  email: ranchenjian@gmail.com
  organization: Dept. of Autom., Heilongjiang Univ., Harbin, China
– sequence: 2
  surname: Zili Deng
  fullname: Zili Deng
  email: dzl@hlju.edu.cn
  organization: Dept. of Autom., Heilongjiang Univ., Harbin, China
BookMark eNo1kF1LwzAYhSNOcJv9AeJN_kBrPtomuSzD6XBTkN2Pt8ubLdKm0mSI_96B89wczs0Dz5mRSRgCEnLPWcE5M4-rxaYpBOO8qIyuNDdXZMZLUZaa81Jdk8wo_b-lmJCp4JXIVSn5Lcli_GTn1LUxQkzJ2xJiohE7l6dT8OFAv9Efjgkt7RHiacQeQ6LuFP0Q6Ct0PQTqfJdwpG4YaToibT42DY3-EKC7IzcOuojZpedku3zaLl7y9fvzatGsc29Yyo0EAcK6vUOrqhJa4ZTe66qthatrFMAkMgbMIkjDDG-tqpkCq608i51F5uThD-sRcfc1-h7Gn93lDfkLi1BS0w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMA.2011.5985819
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1424481147
9781424481149
1424481155
9781424481156
EndPage 1136
ExternalDocumentID 5985819
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i90t-93a2a2dfcfed754ab2f78c85b62f66e2a03e00a0dea39091bd7607ad8d3814743
IEDL.DBID RIE
ISBN 9781424481132
1424481139
ISSN 2152-7431
IngestDate Wed Aug 27 03:41:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-93a2a2dfcfed754ab2f78c85b62f66e2a03e00a0dea39091bd7607ad8d3814743
PageCount 6
ParticipantIDs ieee_primary_5985819
PublicationCentury 2000
PublicationDate 2011-Aug.
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-Aug.
PublicationDecade 2010
PublicationTitle 2011 IEEE International Conference on Mechatronics and Automation
PublicationTitleAbbrev ICMA
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669922
ssj0003010191
Score 1.4699594
Snippet For the multisensor single channel autoregressive moving average(ARMA) signal with common disturbance measurement noise and sensor bias, when the model...
SourceID ieee
SourceType Publisher
StartPage 1131
SubjectTerms ARMA signal
Correlation
Equations
Fast inversion algorithm
Kalman filters
Mathematical model
Multisensor data fusion
multistage identification method
Noise
Noise measurement
Self-tuning fused signal filter
Weight measurement
Title Fast self-tuning weighted measurement fusion Kalman filter for the ARMA signal
URI https://ieeexplore.ieee.org/document/5985819
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLRKxQALHy3iWx4YMXXsJLbHqqICoVYV6tCtcuJnqVKboiaBv4-dpC1ILGxxlljPw13u-d0h9KC0MJSnMRGRoiQMWEpUaCmBCBzeaQFhUodNiPFYzmZq0kKPu1kYAKgun8GTf6x6-Wadll4q60VKRtJ7fB4IEdezWjs9xUFnY7Far7k3T6sC83xyK_FAuZ3rkoGjPVu7p2bNmo5nQFXvdTDq1-aezQd_Ja9UwDM8-d-WT1F3P8GHJztsOkMtyM7R8Q_zwQ4aD3Ve4ByWlhSlV0fwVyWTgsGrvXCIben1NPymlyudYbvw3XXsmC52zBH330d97K-A6GUXTYfP08ELadIVyELRgiiumWbGphaMiEKdMCtkKqMkZjaOgWnKgVJNDWiuHKlIjIip0EYah_GhK-cFamfrDC4RNoZxk6SWBVy7_x8jKUSWKWYcNUhcja9Qxxdm_lH7Z8ybmlz__foGHW11WxrconaxKeEOHaafxSLf3FeH_g06L6U7
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwFBShLbS9dElK9-rQY9XI8iLpGEJDQhZCySG3IFtPEEicktjt71eynaSFXnqzfLF4CGY8T28GoWepuKZ-EhEeSkoCjyVEBoYSCMHineIQxGXYBB-NxHQqxzX0spuFAYDi8hm8useil69XSe6ksmYoRSicx-ehS86qprV2iooFz8pktVz7zj6tiMxz2a3EQeV2skt4lvhsDZ-qNat6nh6VzV572CrtPatP_speKaCnc_a_TZ-jxn6GD4936HSBapBeotMf9oN1NOqoTYY3sDAky50-gr8KoRQ0Xu6lQ2xyp6jhvlosVYrN3PXXseW62HJH3HoftrC7BKIWDTTpvE3aXVLlK5C5pBmRvmKKaZMY0DwMVMwMF4kI44iZKAKmqA-UKqpB-dLSiljziHKlhbYoH9hyXqGDdJXCNcJaM1_HiWGer-wfkBYUQsMk05YcxLbGN6juCjP7KB00ZlVNbv9-_YSOu5PhYDbojfp36GSr4lLvHh1k6xwe0FHymc0368fiAHwDDTSohA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+International+Conference+on+Mechatronics+and+Automation&rft.atitle=Fast+self-tuning+weighted+measurement+fusion+Kalman+filter+for+the+ARMA+signal&rft.au=Chenjian+Ran&rft.au=Zili+Deng&rft.date=2011-08-01&rft.pub=IEEE&rft.isbn=9781424481132&rft.issn=2152-7431&rft.spage=1131&rft.epage=1136&rft_id=info:doi/10.1109%2FICMA.2011.5985819&rft.externalDocID=5985819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2152-7431&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2152-7431&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2152-7431&client=summon