Approximating max-min linear programs with local algorithms

A local algorithm is a distributed algorithm where each node must operate solely based on the information that was available at system startup within a constant-size neighbourhood of the node. We study the applicability of local algorithms to max-min LPs where the objective is to maximise min k Sigm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2008 IEEE International Symposium on Parallel and Distributed Processing s. 1 - 10
Hlavní autoři: Floreen, P., Kaski, P., Musto, T., Suomela, J.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2008
Témata:
ISBN:1424416930, 9781424416936
ISSN:1530-2075
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A local algorithm is a distributed algorithm where each node must operate solely based on the information that was available at system startup within a constant-size neighbourhood of the node. We study the applicability of local algorithms to max-min LPs where the objective is to maximise min k Sigmav CkvXv subject to Sigma v alphaivXv les 1 far each i and Xv ges 0 far each v. Here c kv ges 0, and the support sets V i = {v : alphaiv> 0}, V k = {v : c kv > 0}, I v = {i: alpha iv > 0} and K v = {k : C kv > 0} have bounded size. In the distributed setting, each agent v is responsible for choosing the value of X v , and the communication network is a hypergraph H where the sets V k and V i constitute the hyperedges. We present inapproximability results for a wide range of structural assumptions; for example, even if |V i | and |V k | are bounded by some constants larger than 2, there is no local approximation scheme. To contrast the negative results, we present a local approximation algorithm which achieves good approximation ratios if we can bound the relative growth of the vertex neighbourhoods in H.
AbstractList A local algorithm is a distributed algorithm where each node must operate solely based on the information that was available at system startup within a constant-size neighbourhood of the node. We study the applicability of local algorithms to max-min LPs where the objective is to maximise min k Sigmav CkvXv subject to Sigma v alphaivXv les 1 far each i and Xv ges 0 far each v. Here c kv ges 0, and the support sets V i = {v : alphaiv> 0}, V k = {v : c kv > 0}, I v = {i: alpha iv > 0} and K v = {k : C kv > 0} have bounded size. In the distributed setting, each agent v is responsible for choosing the value of X v , and the communication network is a hypergraph H where the sets V k and V i constitute the hyperedges. We present inapproximability results for a wide range of structural assumptions; for example, even if |V i | and |V k | are bounded by some constants larger than 2, there is no local approximation scheme. To contrast the negative results, we present a local approximation algorithm which achieves good approximation ratios if we can bound the relative growth of the vertex neighbourhoods in H.
Author Kaski, P.
Musto, T.
Suomela, J.
Floreen, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Floreen
  fullname: Floreen, P.
  organization: Dept. of Comput. Sci., Univ. of Helsinki, Helsinki
– sequence: 2
  givenname: P.
  surname: Kaski
  fullname: Kaski, P.
  organization: Dept. of Comput. Sci., Univ. of Helsinki, Helsinki
– sequence: 3
  givenname: T.
  surname: Musto
  fullname: Musto, T.
  organization: Dept. of Comput. Sci., Univ. of Helsinki, Helsinki
– sequence: 4
  givenname: J.
  surname: Suomela
  fullname: Suomela, J.
  organization: Dept. of Comput. Sci., Univ. of Helsinki, Helsinki
BookMark eNpFT9tKw0AUXLGCbe0P6Et-IPHs7kk2i0-lVi0ULNj3sknOxpXc2ASsf--CBedlGIYZZhZs1vUdMXbPIeEc9OPu8Hz4SARAnmAqMyHTK7bgKBB5plFf_wsJMzbnqYRYgEpv2WocvyAgxATKOXtaD4Pvz641k-vqqDXnuHVd1LiOjI-CVXvTjtG3mz6jpi9NE5mm7n2Q7XjHbqxpRlpdeMmOL9vj5i3ev7_uNut97DRMcU4KdUVQZSVZnVdFpqxRJVqlqNAFiDBOlxYFIBc8LQB1SFBZSMvRAMkle_irdUR0GnzY6n9Ol9_yF9gFTGo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPDPS.2008.4536235
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424416949
9781424416943
EndPage 10
ExternalDocumentID 4536235
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-8e749de0d6cef98db67fa7c4f77eb9b025309cf42041215b049e74ecb3f14a0e3
IEDL.DBID RIE
ISBN 1424416930
9781424416936
ISSN 1530-2075
IngestDate Wed Aug 27 02:09:09 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-8e749de0d6cef98db67fa7c4f77eb9b025309cf42041215b049e74ecb3f14a0e3
PageCount 10
ParticipantIDs ieee_primary_4536235
PublicationCentury 2000
PublicationDate 2008-April
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-April
PublicationDecade 2000
PublicationTitle 2008 IEEE International Symposium on Parallel and Distributed Processing
PublicationTitleAbbrev IPDPS
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453243
ssj0020349
Score 1.432839
Snippet A local algorithm is a distributed algorithm where each node must operate solely based on the information that was available at system startup within a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Algorithm design and analysis
Approximation algorithms
Circuits
Communication networks
Computational modeling
Computer science
Distributed algorithms
Distributed decision making
Information technology
Linear approximation
Title Approximating max-min linear programs with local algorithms
URI https://ieeexplore.ieee.org/document/4536235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4OnqZv4mxw8WpclaZPgSdShl1Fwh91G2r6Oguuk3WR_vknbVQQv3ppCScijeV_e-973AG7HgY4FxcRDl_8XzOV3U0o9ZhiThjNDsW42IadTNZ_rsAN3bS0MIlbkM7x3j1UuP1nHWxcqGwnfHrfc70JXyqCu1WrjKRaaWGzQnsLM6a7UWql2YusX90VdTnyk1XpqxsG-mobq0Vv4HL7XHMtmul99Vyq3M-n_b8FHMPyp3yNh65mOoYP5CfT3DRxI8z8P4OHRKYrvModa8yVZmZ23ynLikKcpSEPdKomL1ZLK6RHzsVwXdrgqhzCbvMyeXr2mm4KXabrxFEqhE6RJEGOqVRIFMjUyFqmUGOnIQh9OdZwK5gS4xn5kbw72C4wjno6FtRg_hV6-zvEMiEUxESZojayV4CJSXFlPb1IfmVYo6DkM3FYsPmu9jEWzCxd_v76Ew5qD4dgwV9DbFFu8hoP4a5OVxU1l5G_vfp_R
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qFfRUtRW_3YNHY7ebTTaLJ1FLi7UE7KG3skkmJWBSSVvpz3c3SSOCF2_ZQNgwQ3ZeZt68AbjtuTLkFCMLTf2fM1PfjSm1mGJMKJspiuWwCTEee9Op9BtwV_fCIGJBPsN7c1nU8qNFuDapsi539HFrOzuw63DOaNmtVWdUNDjR6KA-h5lRXinVUvXWOjJu27qM_Eit9lSt3W0_DZXdof_sv5csy2rDX5NXisDTb_3vlQ-h89PBR_w6Nh1BA7NjaG1HOJDqi27Dw6PRFN8kBrdmc5KqjZUmGTHYU-WkIm8ticnWkiLsEfUxX-R6mS47MOm_TJ4GVjVPwUokXVkeCi4jpJEbYiy9KHBFrETIYyEwkIEGPzaVYawNy43kRKD_HfQTGAZ23OPaZ_YJNLNFhqdANI4JMELtZulxmwee7elYr2IHmfSQ0zNoG1PMPkvFjFllhfO_b9_A_mDyNpqNhuPXCzgoGRmGG3MJzVW-xivYC79WyTK_Lhz-DXa-oxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+International+Symposium+on+Parallel+and+Distributed+Processing&rft.atitle=Approximating+max-min+linear+programs+with+local+algorithms&rft.au=Floreen%2C+P.&rft.au=Kaski%2C+P.&rft.au=Musto%2C+T.&rft.au=Suomela%2C+J.&rft.date=2008-04-01&rft.pub=IEEE&rft.isbn=9781424416936&rft.issn=1530-2075&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FIPDPS.2008.4536235&rft.externalDocID=4536235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-2075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-2075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-2075&client=summon