Rank Distribution Analysis for Sparse Random Linear Network Coding

In this paper, the decoding failure probability for sparse random linear network coding in a probabilistic network model is analyzed. The network transfer matrix is modeled by a random matrix consisting of independently and identically distributed elements chosen from a large finite field, and the p...

Full description

Saved in:
Bibliographic Details
Published in:2011 International Symposium on Networking Coding pp. 1 - 6
Main Authors: Xiaolin Li, Wai Ho Mow, Fai-Lung Tsang
Format: Conference Proceeding
Language:English
Published: IEEE 01.07.2011
Subjects:
ISBN:1612841384, 9781612841380
ISSN:2374-9660
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, the decoding failure probability for sparse random linear network coding in a probabilistic network model is analyzed. The network transfer matrix is modeled by a random matrix consisting of independently and identically distributed elements chosen from a large finite field, and the probability of choosing each nonzero field element tends to zero, as the finite field size tends to infinity. In the case of a constant dimension subspace code over a large finite field with bounded distance decoding, the decoding failure probability is given by the rank distribution of a random transfer matrix. We prove that the latter can be completely characterized by the zero pattern of the matrix, i.e., where the zeros are located in the matrix. This insight allows us to use counting arguments to derive useful upper and lower bounds on the rank distribution and hence the decoding failure probability. Our rank distribution analysis not only sheds some light on how to minimize network resource in a sparse random linear network coding application, but is also of theoretical interest due to its connection with probabilistic combinatorics.
AbstractList In this paper, the decoding failure probability for sparse random linear network coding in a probabilistic network model is analyzed. The network transfer matrix is modeled by a random matrix consisting of independently and identically distributed elements chosen from a large finite field, and the probability of choosing each nonzero field element tends to zero, as the finite field size tends to infinity. In the case of a constant dimension subspace code over a large finite field with bounded distance decoding, the decoding failure probability is given by the rank distribution of a random transfer matrix. We prove that the latter can be completely characterized by the zero pattern of the matrix, i.e., where the zeros are located in the matrix. This insight allows us to use counting arguments to derive useful upper and lower bounds on the rank distribution and hence the decoding failure probability. Our rank distribution analysis not only sheds some light on how to minimize network resource in a sparse random linear network coding application, but is also of theoretical interest due to its connection with probabilistic combinatorics.
Author Xiaolin Li
Wai Ho Mow
Fai-Lung Tsang
Author_xml – sequence: 1
  surname: Xiaolin Li
  fullname: Xiaolin Li
  email: darwinlxl@ust.hk
  organization: Hong Kong Univ. of Sci. & Technol., Kowloon, China
– sequence: 2
  surname: Wai Ho Mow
  fullname: Wai Ho Mow
  email: eewhmow@ust.hk
  organization: Hong Kong Univ. of Sci. & Technol., Kowloon, China
– sequence: 3
  surname: Fai-Lung Tsang
  fullname: Fai-Lung Tsang
  email: eefl@ust.hk
  organization: Hong Kong Univ. of Sci. & Technol., Kowloon, China
BookMark eNo9j99qwjAYxTPmYOp8gjHIC7TLlz9tc-mq24SiML2XtPk6MjWVpGP49itMdm4OB34czpmQke88EvIELAVg-nm1XS935WaRcgaQKp0XWugbMoEMeCFBsuz2P4hCjsiYi1wmOsvYPZnF-MUGZZmWwMfk5cP4A1242AdXf_eu83TuzfESXaRtF-j2bEJEOlC2O9HKeTSBrrH_6cKBlp11_vOB3LXmGHF29SnZvQ4D35Nq87Yq51XiNOuTAqVttKmNRdVKZVsQjdWi5U0jOSjdFGiNNihAoaiZhALbWog6V9IgmEZMyeNfrUPE_Tm4kwmX_fW--AUgF1BM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISNETCOD.2011.5978939
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 1612841406
9781612841403
9781612841397
1612841392
EndPage 6
ExternalDocumentID 5978939
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-8e4dc9abade5f45df13cd93f2cc42159c8eda9ae315e3b0418efb33b754ae1ac3
IEDL.DBID RIE
ISBN 1612841384
9781612841380
ISSN 2374-9660
IngestDate Wed Aug 27 03:41:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-8e4dc9abade5f45df13cd93f2cc42159c8eda9ae315e3b0418efb33b754ae1ac3
PageCount 6
ParticipantIDs ieee_primary_5978939
PublicationCentury 2000
PublicationDate 2011-July
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-July
PublicationDecade 2010
PublicationTitle 2011 International Symposium on Networking Coding
PublicationTitleAbbrev ISNETCOD
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669412
ssj0003188986
Score 1.5250708
Snippet In this paper, the decoding failure probability for sparse random linear network coding in a probabilistic network model is analyzed. The network transfer...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bipartite graph
Decoding
Encoding
Network coding
Probabilistic logic
Sparse matrices
Upper bound
Title Rank Distribution Analysis for Sparse Random Linear Network Coding
URI https://ieeexplore.ieee.org/document/5978939
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELXaigNcWFrELh84EhrHS-wrLRVIECraQ2-VV6lCJFUXvh87SYOQuHCzrSh2nOXNTOa9AeAWM6Gl8k6OkpZHxFAaKcV1xJLEYae9Ua5LndmXNMv4bCbGLXDXcGGstWXymb0PzfJfvin0NoTK-t749fAq2qCdpqziajXxFA-dgtRQHfr-WeWCV7XlUlKKUAZeFwvfY4Q5qeWedv24ZvegWPSfJ9njdPA2rAQ-60l_VV8pwWd0-L9lH4HeD4sPjht8OgYtm5-Ag9dGp3XdBQ_vMv-AwyCeW9e9gjuVEuitWThZer_XQn-UKT6h91v9ewGzKnMcDopw3h6Yjvx1PEV1VYVoIeJNxC0xWkgljaWOUOMQ1kZgl2hNPPwLza0Jit0YUYtVTBC3TmGsUkqkRVLjU9DJi9yeASi1pi4ElR1SJJGxMJY5howxjKZEsnPQDZsxX1a6GfN6Hy7-Hr4E-1W8NqTCXoHOZrW112BPf20W69VNebO_AQWTpJk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwFLRKQQIuLC1ixweOhMaxndhXClUr2lDRHnqrvEoVoqm68P3YSRqExIVbHEVZnGXee3kzA8A9jrkS0iU5UhgWEE1pICVTQRxFFlvlgnKV68z2kzRlkwkf1sBDxYUxxuTNZ-bRL-b_8nWmNr5U1nLBr4NXvgN2vXNWydaqKioOPDkpwdqP3dPKOCvc5RKSy1B6Zlfsv8gIM1IKPm3HYcnvQSFv9Ubpy7j99lxIfJaH_eW_ksNP5-h_J34Mmj88PjisEOoE1Mz8FBwOKqXWVQM8vYv5B3z28rml8xXc6pRAF8_C0cJlvga6rXT2CV3m6t4MmBa947Cd-f02wbjjrqMblL4KwYyH64AZohUXUmhDLaHaIqw0xzZSirgAgCtmtNfsxogaLEOCmLESY5lQIgwSCp-B-jybm3MAhVLU-rKyRZJEIuTaxDZGWuuYJkTEF6DhJ2O6KJQzpuU8XP69-g7sd8eD_rTfS1-vwEFRvfWNsdegvl5uzA3YU1_r2Wp5m9_4b89tp-I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Symposium+on+Networking+Coding&rft.atitle=Rank+Distribution+Analysis+for+Sparse+Random+Linear+Network+Coding&rft.au=Xiaolin+Li&rft.au=Wai+Ho+Mow&rft.au=Fai-Lung+Tsang&rft.date=2011-07-01&rft.pub=IEEE&rft.isbn=9781612841380&rft.issn=2374-9660&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FISNETCOD.2011.5978939&rft.externalDocID=5978939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-9660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-9660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-9660&client=summon