HMM-based integration of multiple models for intrusion detection

In this paper, a novel intrusion detection system based on hidden Markov model, analyzing with Fast Adaptive Clustering Algorithm, combining the characteristic of dynamic adaption and sniffing from multi-model has been proposed. The proposed detection model combines qualities from all these categori...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE) Ročník 2; s. V2-137 - V2-140
Hlavní autoři: Chen Xiuqing, Zhang Yongping, Tang Jiutao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2010
Témata:
ISBN:1424465397, 9781424465392
ISSN:2154-7491
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a novel intrusion detection system based on hidden Markov model, analyzing with Fast Adaptive Clustering Algorithm, combining the characteristic of dynamic adaption and sniffing from multi-model has been proposed. The proposed detection model combines qualities from all these categories, anomaly detection and misuse detection. The proposed mechanism not only takes the responsibility to collect and detect all of the desired information on each different stage, but also denotes specific clustering algorithm to indicate the significance of possible influence on each clustered data. All of the clustered data and detected normal/abnormal signals will be transferred to the database of the anomaly detection model for further integrated evaluation on those multiple observing factors based on hidden Markov model algorithm. The experimental results with the KDD Cup99 data sets demonstrate that the proposed IDS mechanism possesses good efficiency and has a high detection rate.
AbstractList In this paper, a novel intrusion detection system based on hidden Markov model, analyzing with Fast Adaptive Clustering Algorithm, combining the characteristic of dynamic adaption and sniffing from multi-model has been proposed. The proposed detection model combines qualities from all these categories, anomaly detection and misuse detection. The proposed mechanism not only takes the responsibility to collect and detect all of the desired information on each different stage, but also denotes specific clustering algorithm to indicate the significance of possible influence on each clustered data. All of the clustered data and detected normal/abnormal signals will be transferred to the database of the anomaly detection model for further integrated evaluation on those multiple observing factors based on hidden Markov model algorithm. The experimental results with the KDD Cup99 data sets demonstrate that the proposed IDS mechanism possesses good efficiency and has a high detection rate.
Author Tang Jiutao
Zhang Yongping
Chen Xiuqing
Author_xml – sequence: 1
  surname: Chen Xiuqing
  fullname: Chen Xiuqing
  email: xiuqingchen@126.com
  organization: Sch. of Comput. Sci. & Technol., China Univ. of Min. & Technol., Xuzhou, China
– sequence: 2
  surname: Zhang Yongping
  fullname: Zhang Yongping
  email: ypzhang@cumt.edu.cn
  organization: Sch. of Comput. Sci. & Technol., China Univ. of Min. & Technol., Xuzhou, China
– sequence: 3
  surname: Tang Jiutao
  fullname: Tang Jiutao
  email: tangjiutao@126.com
  organization: Sch. of Comput. Sci. & Technol., China Univ. of Min. & Technol., Xuzhou, China
BookMark eNo9j81qwzAQhFWaQpM0T5CLX0Cp_taybi0mbQoJvfgeJGtVVPwTLOfQt69NQ-eyzPCxzKzIous7JGTL2Y5zZp4_ytey2u8EmwIAbabsjqy4EkrloIS-_zfS6AVZCg6KamX4I9mk9M0mKRCgiyV5OZxO1NmEPovdiF-DHWPfZX3I2mszxkuDWdt7bFIW-mFGhmuaAY8j1jP6RB6CbRJubndNqrd9VR7o8fN96nmk0bCRFjVnudDeCSu1DFg4CdZwx1WQTiP4XBsFruaga-GnaogKCg_W1c4YG-SabP_eRkQ8X4bY2uHnfBsvfwF8oE5D
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICACTE.2010.5579109
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424465427
9781424465415
9781424465422
1424465419
EndPage V2-140
ExternalDocumentID 5579109
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-8c10627db2a373fe8b35a91b14f3b7e5d67945bc157c2d257ee458d5abcb99af3
IEDL.DBID RIE
ISBN 1424465397
9781424465392
ISSN 2154-7491
IngestDate Wed Aug 27 03:00:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-8c10627db2a373fe8b35a91b14f3b7e5d67945bc157c2d257ee458d5abcb99af3
ParticipantIDs ieee_primary_5579109
PublicationCentury 2000
PublicationDate 2010-Aug.
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-Aug.
PublicationDecade 2010
PublicationTitle 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)
PublicationTitleAbbrev ICACTE
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452578
ssj0000328620
Score 1.4601473
Snippet In this paper, a novel intrusion detection system based on hidden Markov model, analyzing with Fast Adaptive Clustering Algorithm, combining the characteristic...
SourceID ieee
SourceType Publisher
StartPage V2-137
SubjectTerms Adaptation model
anomaly detection
detection rate
Fast Adaptive Clustering Algorithm
hidden Markov model
Hidden Markov models
misuse detection
Title HMM-based integration of multiple models for intrusion detection
URI https://ieeexplore.ieee.org/document/5579109
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED4B6tCJtlD1LQ8d65LgOLa3VghEBxADAxvy4yKxhIpHf39tJ6Gq1KVbHOXh3Mn5Tr677wN4LiQLstqaGuYkzTDJqEk0p9JaxzwmFChMFJsQ87lcrdSiBS-nXhhEjMVn-BoOYy7fbe0xbJUNOBce3VQb2kLkVa_WaT8l8MLldegTxyFhF3_EHtQyKjKVNn1dgY1VNHRP9XhYMxL5xw8-Ru-j5bgq-6pf-Ut7JULPpPu_SV9A_6eHjyxO6HQJLSyvoNuIOJB6TffgbTqb0YBljjTUEd5VZFuQptaQRLWcPfHhbbhkdwwbbMThIVZxlX1YTsbL0ZTWsgp0o5KD90IaqImdGWomWIHSMK5VatKsYEYgd7lfotzYlAs7dN6GiBmXjmtjjVK6YNfQKbcl3gBR_n6To3SJDyKt5IZrqawPIFLkmKT6FnrBHuvPijhjXZvi7u_T93BepeZDdd0DdPz34COc2a_DZr97it7-BjS2o2E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKQYKpQIv4xgMjpkls1_YGqlq1oq06ZOhWxfZF6pKifvD7sZ2kCImFLY4SOb6T806-u_cQes4l9bLaGdHUSsIgYkRHGSfSGEsdJuQgdBCbELOZXCzUvIFeDr0wABCKz-DVX4Zcvl2bvT8q63IuHLqpI3TMGUuislvrcKLimeF6VfATxj5lF37FDtYYEUzFdWeX52MVNeFTNU4qTiI3QXfcf--ng7Lwq5r0l_pKAJ9h63-ffY46P118eH7ApwvUgOIStWoZB1zt6jZ6G02nxKOZxTV5hHMWXue4rjbEQS9ni12A6x_Z7P0RG7awC3VcRQelw0HaH5FKWIGsVLRzfog9ObHVSUYFzUFqyjMV65jlVAvgtuc2Kdcm5sIk1tkQgHFpeaaNVirL6RVqFusCrhFW7n3dA2kjF0YayTXPpDIuhIiBQxRnN6jt7bH8LKkzlpUpbv--_YROR-l0spyMZx936KxM1Ptau3vUdGuDB3Rivnar7eYxeP4b68qmqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+3rd+International+Conference+on+Advanced+Computer+Theory+and+Engineering%28ICACTE%29&rft.atitle=HMM-based+integration+of+multiple+models+for+intrusion+detection&rft.au=Chen+Xiuqing&rft.au=Zhang+Yongping&rft.au=Tang+Jiutao&rft.date=2010-08-01&rft.pub=IEEE&rft.isbn=9781424465392&rft.issn=2154-7491&rft.volume=2&rft.spage=V2-137&rft.epage=V2-140&rft_id=info:doi/10.1109%2FICACTE.2010.5579109&rft.externalDocID=5579109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2154-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2154-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2154-7491&client=summon