Software faults prediction using multiple classifiers

In recent years, the use of machine learning algorithms (classifiers) has proven to be of great value in solving a variety of problems in software engineering including software faults prediction. This paper extends the idea of predicting software faults by using an ensemble of classifiers which has...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2011 3rd International Conference on Computer Research and Development Ročník 4; s. 504 - 510
Hlavný autor: Twala, B
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.03.2011
Predmet:
ISBN:1612848397, 9781612848396
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In recent years, the use of machine learning algorithms (classifiers) has proven to be of great value in solving a variety of problems in software engineering including software faults prediction. This paper extends the idea of predicting software faults by using an ensemble of classifiers which has been shown to improve classification performance in other research fields. Benchmarking results on two NASA public datasets show all the ensembles achieving higher accuracy rates compared with individual classifiers. In addition, boosting with AR and DT as components of an ensemble is more robust for predicting software faults.
ISBN:1612848397
9781612848396
DOI:10.1109/ICCRD.2011.5763845