A Revised Ant Clustering Algorithm with Obstacle Constraints

Clustering of spatial data in the presence of obstacles has a wide application. It is an important research topic in the spatial data mining. This paper discusses the problem of spatial clustering with obstacles constraints and presents a revised method named ant clustering algorithm with obstacle c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2009 WRI World Congress on Computer Science and Information Engineering : March 31, 2009-April 2, 2009 Ročník 3; s. 679 - 683
Hlavní autoři: Jianhua Qu, Xiyu Liu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.03.2009
Témata:
ISBN:9780769535074, 0769535070
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Clustering of spatial data in the presence of obstacles has a wide application. It is an important research topic in the spatial data mining. This paper discusses the problem of spatial clustering with obstacles constraints and presents a revised method named ant clustering algorithm with obstacle constraints(ACAOC) based on the basic ant model. This algorithm avoids some defects of other spatial clustering algorithms. These defects make algorithm not iterate when it has arrived at the stagnating state of the iteration or local optimum solution. ACAOC algorithm proposed in this paper cannot only give attention to local converging and the whole converging, but also consider the obstacles that exit in the real world and make the clustering result more practical. Because of the use of approximate nearest neighbor (ANN), the computing speed is increased greatly. The last experimental results conducted on synthetic data sets demonstrate that this method could extract the correct number of clusters with good clustering quality and high whole converging speed compared to the results obtained from clustering algorithm ignoring considering obstacles constraints.
AbstractList Clustering of spatial data in the presence of obstacles has a wide application. It is an important research topic in the spatial data mining. This paper discusses the problem of spatial clustering with obstacles constraints and presents a revised method named ant clustering algorithm with obstacle constraints(ACAOC) based on the basic ant model. This algorithm avoids some defects of other spatial clustering algorithms. These defects make algorithm not iterate when it has arrived at the stagnating state of the iteration or local optimum solution. ACAOC algorithm proposed in this paper cannot only give attention to local converging and the whole converging, but also consider the obstacles that exit in the real world and make the clustering result more practical. Because of the use of approximate nearest neighbor (ANN), the computing speed is increased greatly. The last experimental results conducted on synthetic data sets demonstrate that this method could extract the correct number of clusters with good clustering quality and high whole converging speed compared to the results obtained from clustering algorithm ignoring considering obstacles constraints.
Author Xiyu Liu
Jianhua Qu
Author_xml – sequence: 1
  surname: Jianhua Qu
  fullname: Jianhua Qu
  organization: Sch. of Manage., Shandong Normal Univ., Jinan, China
– sequence: 2
  surname: Xiyu Liu
  fullname: Xiyu Liu
  organization: Sch. of Manage., Shandong Normal Univ., Jinan, China
BookMark eNotjk1Lw0AUABdUUGuOnrzsH0h8L9v9Ai8hVC0UCtp72SQvdSXdyO6q-O8t6GXmNsw1Ow9zIMZuESpEsPft63pV1QC2kgrOWGG1Aa2sFBL08pIVKb0DAFqlpVZX7KHhL_TlEw28CZm302fKFH048GY6zNHntyP_PpFvu5RdPxFv55BydD7kdMMuRjclKv69YLvH1a59Ljfbp3XbbEpvIZdGdbLWqgM7SqkMYg8C-hGXyjjtBiTdi14NohNDLczpWtUkCFE5Y00Hg1iwu7-sJ6L9R_RHF3_2EjXYWotfe3tGjw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSIE.2009.560
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 683
ExternalDocumentID 5170927
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-86b5276b09f556811c030cf1468a7ad1e7c3c6d3b3d23856062e3e116a898b0d3
IEDL.DBID RIE
ISBN 9780769535074
0769535070
IngestDate Wed Aug 27 02:11:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-86b5276b09f556811c030cf1468a7ad1e7c3c6d3b3d23856062e3e116a898b0d3
PageCount 5
ParticipantIDs ieee_primary_5170927
PublicationCentury 2000
PublicationDate 2009-March
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-March
PublicationDecade 2000
PublicationTitle 2009 WRI World Congress on Computer Science and Information Engineering : March 31, 2009-April 2, 2009
PublicationTitleAbbrev CSIE
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001967576
Score 1.4212211
Snippet Clustering of spatial data in the presence of obstacles has a wide application. It is an important research topic in the spatial data mining. This paper...
SourceID ieee
SourceType Publisher
StartPage 679
SubjectTerms ANN
Ant algorithm
Application software
Bridges
Buildings
Clustering algorithms
Computer science
data clustering
Data engineering
Data mining
Engineering management
Nearest neighbor searches
Obstacle constraints
Rivers
Title A Revised Ant Clustering Algorithm with Obstacle Constraints
URI https://ieeexplore.ieee.org/document/5170927
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0A8eAJFYzf2YNHK22X_Uq8EALRxCCJHLiR7naqJNgaKP5-d7cVPHjx1m3SpLvt5s2bnXkP4Fb2GaJOLE3VyhKU2PIUmXATWC6RZYoqC9peMv9ZTCZyPlfTBtztemEQ0Ref4b279Gf5aWG2LlXWY5EIVSya0BSCV71a-3yKsqGv4BUzV4zaOKeWdNqN-3uNzd7w9WlUqVUyp075y1nFA8u4_b9XOoLuvkOPTHfYcwwNzE-g_WPRQOod24GHAXHZ_w2mZJCXZLjaOmEE-wgZrN6K9bJ8_yAuFUtetA0T7S9EnIOn940oN12YjUez4WNQGyYESxWWgeSaxYLrUGVeVywydgebzDVXJSJJIxSGGp5STVML1HbePEaKUcQTqaQOU3oKrbzI8QwIuqoNaZjSFuKNMNLIREvNWNY3GQ_NOXTcWiw-K0mMRb0MF3_fvoTD6hDGlW5dQatcb_EaDsxXudysb_x3_Abvjpli
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNETKhh_24NHJ9u6_kq8EAKBiEgiB25k7TohwWFg-PfbdhM8ePG2Llmydmu-972-930A9zwiWsvY0FQpDEEJDU_hMVWe4RJpKrAwoO0k8wdsOOSTiRhV4GHbC6O1dsVn-tFeurP8ZKk2NlXWJAHzRcj2YJ9EUegX3Vq7jIowwS-jBTcXBJtIpxR12o6jncpms_3W7xR6lcTqU_7yVnHQ0q3976WOobHr0UOjLfqcQEVnp1D7MWlA5Z6tw1ML2fz_WieoleWovdhYaQTzCGot3pereT77QDYZi16lCRTNT4Ssh6dzjsjXDRh3O-N2zystE7y58HOPU0lCRqUvUqcsFiizh1Vq26tiFieBZgormmCJEwPVZt401FgHAY254NJP8BlUs2WmzwFpW7fBFRHSgLxiiiseSy4JSSOVUl9dQN2uxfSzEMWYlstw-fftOzjsjV8G00F_-HwFR8WRjC3kuoZqvtroGzhQX_l8vbp13_QbH3mcqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+WRI+World+Congress+on+Computer+Science+and+Information+Engineering+%3A+March+31%2C+2009-April+2%2C+2009&rft.atitle=A+Revised+Ant+Clustering+Algorithm+with+Obstacle+Constraints&rft.au=Jianhua+Qu&rft.au=Xiyu+Liu&rft.date=2009-03-01&rft.pub=IEEE&rft.isbn=9780769535074&rft.volume=3&rft.spage=679&rft.epage=683&rft_id=info:doi/10.1109%2FCSIE.2009.560&rft.externalDocID=5170927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769535074/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769535074/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769535074/sc.gif&client=summon&freeimage=true