Robust interval type-2 FCRM algorithm for nonlinear systems identification in a stochastic environment
This paper investigates the sensibility of the interval type-2 fuzzy c-regression algorithm to noise and outliers. To overcome this problem, a modified version of this algorithm is presented. The consequences parameters of local models are estimated using the weighted recursive least squares method....
Uloženo v:
| Vydáno v: | 2017 International Conference on Control, Automation and Diagnosis (ICCAD) s. 180 - 184 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.01.2017
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper investigates the sensibility of the interval type-2 fuzzy c-regression algorithm to noise and outliers. To overcome this problem, a modified version of this algorithm is presented. The consequences parameters of local models are estimated using the weighted recursive least squares method. This approach is tested and validated using two examples. |
|---|---|
| DOI: | 10.1109/CADIAG.2017.8075653 |