An Exact Algorithm for the Biobjective 0-1 Linear Knapsack Problem with a Single Continuous Variable

In this paper, we study one variant of the multiobjective knapsack problem, i.e., the biobjective 0-1 linear knapsack problem with a single continuous variable (BKPC). An exact algorithm, the biobjective branch and bound method (BOBB), is presented to find all nondominated points of the BKPC. We ana...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT) s. 81 - 85
Hlavný autor: Liu, Hongtao
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2017
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we study one variant of the multiobjective knapsack problem, i.e., the biobjective 0-1 linear knapsack problem with a single continuous variable (BKPC). An exact algorithm, the biobjective branch and bound method (BOBB), is presented to find all nondominated points of the BKPC. We analyze the nondominated frontier of the BKPC and design a new branching strategy to improve the algorithm. Finally an illustrative example shows how the algorithm solves a practical problem.
AbstractList In this paper, we study one variant of the multiobjective knapsack problem, i.e., the biobjective 0-1 linear knapsack problem with a single continuous variable (BKPC). An exact algorithm, the biobjective branch and bound method (BOBB), is presented to find all nondominated points of the BKPC. We analyze the nondominated frontier of the BKPC and design a new branching strategy to improve the algorithm. Finally an illustrative example shows how the algorithm solves a practical problem.
Author Liu, Hongtao
Author_xml – sequence: 1
  givenname: Hongtao
  surname: Liu
  fullname: Liu, Hongtao
BookMark eNotjMtOwzAUBY0EElC6R2LjH0jxI7bjZQgtICpRiYptde3ctC6pUzkpj7-nAlZnMTPnkpzGLiIh15xNOGf2dnFflcuJYNxMGGNCnJCxNQVXstCSK67Oybjvt79IW8XMBanLSKdf4AdatusuhWGzo02X6LBBehc6t0U_hA-kLON0HiJCos8R9j34d7pInWtxRz-PFQX6GuK6RVp1cQjx0B16-gYpwFG5ImcNtD2O_3dElrPpsnrM5i8PT1U5z4JlQ1YIgYXIBQd0tVFOO_AN1156bQSzzNeSc4V54QBsbUFbLRrPHM-VyVGAHJGbv9uAiKt9CjtI36tCCsMMkz_Sa1WC
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PDCAT.2017.00022
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781538631515
1538631512
EndPage 85
ExternalDocumentID 8327070
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i90t-822e82421aebd75b6bacf16c3c672090cd3115e48baa9d9a6962fc0b14574e2a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-822e82421aebd75b6bacf16c3c672090cd3115e48baa9d9a6962fc0b14574e2a3
PageCount 5
ParticipantIDs ieee_primary_8327070
PublicationCentury 2000
PublicationDate 2017-Dec
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec
PublicationDecade 2010
PublicationTitle 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)
PublicationTitleAbbrev PDCAT
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002269507
Score 1.6650043
Snippet In this paper, we study one variant of the multiobjective knapsack problem, i.e., the biobjective 0-1 linear knapsack problem with a single continuous variable...
SourceID ieee
SourceType Publisher
StartPage 81
SubjectTerms Approximation algorithms
Binary trees
Biobjective mixed integer programming
Branch and bound
Knapsack problem
Linear programming
Mathematical model
Mixed integer linear programming
Optimization
Upper bound
Title An Exact Algorithm for the Biobjective 0-1 Linear Knapsack Problem with a Single Continuous Variable
URI https://ieeexplore.ieee.org/document/8327070
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4A8eAJFYzvzMGjlZa22-4REWKiISQSwo3sbqdaxZZAa_z5zraAHrx4a_bQTXZmd75vnoxdE6KWHGVscRQ-ERShrRBjtKTA0POD2PHLiOn0KRiNwtlMjGvsZlcLg4hl8hnems8ylh9lujCusg5pX0AqWmf1IOBVrdbOn0IwQhC22UYibdEZ3_d7E5O8VTYpNNNxf81PKc3HsPm_jQ9Y-6cOD8Y7C3PIapgeseZ2EANs7mWLRb0UBl9S59BbvGRE918_gMAoELiDuyRTb9WrBrblAJFPUm54TOVyLfW7-b-ZKAPGIQsSnmmjBYJpWpWkRVasYUps2tRXtdlkOJj0H6zN-AQrEXZukeXH0AR8Jaoo8BVXUscO167mQdcWto5Mox30QiWliEhigndjbSuHRORhV7rHrJFmKZ4wcImoeTZql7gIAS4pZCSVua-uw2MXnVPWMmc2X1YNMuab4zr7e_mc7RuhVDkhF6yRrwq8ZHv6M0_Wq6tSqt_UK6Nq
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4gmugJFYxv5-DRSkufe0SEYEBCYkO4ke12qlVsCbTGn-9sqejBi7emh26ys9v5vnl9jF0TohYOikhzkNtEULjUPIxQExw9y3Yjwy4yppOhOxp50ykfV9jNphcGEYviM7xVj0UuP0xlrkJlTTp9Lh3RLbatlLPKbq1NRIWABCd0852L1HlzfN9p-6p8qxhTqPRxfymoFA6kV_vf0vus8dOJB-ONjzlgFUwOWe1bigHKm1lnYTuB7qeQGbTnzykR_pd3IDgKBO_gLk6D1_V_DXTNAKKfdLxhkIjFSsg39X2lKQMqJAsCnmihOYIaWxUneZqvYEJ8WnVYNZjf6_qdvlYKKGgx1zONfD96KuUrMAhdO3ACISPDkaZ03JbOdRmqUTtoeYEQPCSbcacVST0wyEgWtoR5xKpJmuAxA5OomqWjNImNEOQSXIQiUDfWNJzIROOE1dWezRbrERmzcrtO_359xXb7_uNwNnwYDc7YnjLQukLknFWzZY4XbEd-ZPFqeVlY-AuGraaz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+18th+International+Conference+on+Parallel+and+Distributed+Computing%2C+Applications+and+Technologies+%28PDCAT%29&rft.atitle=An+Exact+Algorithm+for+the+Biobjective+0-1+Linear+Knapsack+Problem+with+a+Single+Continuous+Variable&rft.au=Liu%2C+Hongtao&rft.date=2017-12-01&rft.pub=IEEE&rft.spage=81&rft.epage=85&rft_id=info:doi/10.1109%2FPDCAT.2017.00022&rft.externalDocID=8327070