Parallel single front genetic algorithm: performance analysis in a cluster system
In this paper a performance analysis in a cluster system of the parallel single front genetic algorithm (PSFGA) is carried out. The PSFGA is a parallel evolutionary optimizer for multiobjective problems that use a structured population in the form of a set of islands. The SFGA, an elitist evolutiona...
Uloženo v:
| Vydáno v: | Proceedings International Parallel and Distributed Processing Symposium s. 8 pp. |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2003
|
| Témata: | |
| ISBN: | 0769519261, 9780769519265 |
| ISSN: | 1530-2075 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper a performance analysis in a cluster system of the parallel single front genetic algorithm (PSFGA) is carried out. The PSFGA is a parallel evolutionary optimizer for multiobjective problems that use a structured population in the form of a set of islands. The SFGA, an elitist evolutionary algorithm with a clearing procedure that uses a grid in the objective space for diversity maintaining purposes, is performed on each subpopulation (island) associated to a different area in the search space. Experimental results show that PSFGA outperforms SFGA and SPEA (strength Pareto evolutionary algorithm) in the cases studied. |
|---|---|
| ISBN: | 0769519261 9780769519265 |
| ISSN: | 1530-2075 |
| DOI: | 10.1109/IPDPS.2003.1213273 |

