A novel system architecture for real-time, robust and accurate step detection for PDR based indoor localization

Indoor localization is currently of good interest concerning both business viability and end user experience. In this paper, we propose an accurate and robust step detection algorithm for smartphone based pedestrian dead reckoning (PDR) systems. The developed algorithm makes use of the acceleration...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2018 IEEE 4th World Forum on Internet of Things (WF-IoT) s. 754 - 759
Hlavní autori: Kiran, M. P. R. S., Rajalakshmi, P., Giluka, Mukesh Kumar, Tamma, Bheemarjuna Reddy
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.02.2018
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Indoor localization is currently of good interest concerning both business viability and end user experience. In this paper, we propose an accurate and robust step detection algorithm for smartphone based pedestrian dead reckoning (PDR) systems. The developed algorithm makes use of the acceleration measured from the smartphone and uses a statistical threshold based classification to detect the steps accurately. The statistical thresholds used are derived from extensive field trials with subjects of different age groups and found to provide good accuracy when used in real-time. For analyzing the performance of the proposed algorithm, we have implemented the algorithm on Android platform and performed extensive field trials. The analysis proves that the proposed algorithm identifies the user steps in real-time with an accuracy of more than 99% with minimum memory requirements.
AbstractList Indoor localization is currently of good interest concerning both business viability and end user experience. In this paper, we propose an accurate and robust step detection algorithm for smartphone based pedestrian dead reckoning (PDR) systems. The developed algorithm makes use of the acceleration measured from the smartphone and uses a statistical threshold based classification to detect the steps accurately. The statistical thresholds used are derived from extensive field trials with subjects of different age groups and found to provide good accuracy when used in real-time. For analyzing the performance of the proposed algorithm, we have implemented the algorithm on Android platform and performed extensive field trials. The analysis proves that the proposed algorithm identifies the user steps in real-time with an accuracy of more than 99% with minimum memory requirements.
Author Rajalakshmi, P.
Kiran, M. P. R. S.
Giluka, Mukesh Kumar
Tamma, Bheemarjuna Reddy
Author_xml – sequence: 1
  givenname: M. P. R. S.
  surname: Kiran
  fullname: Kiran, M. P. R. S.
  email: ee12m1021@iith.ac.in
  organization: WiNet Laboratory, Dept. of Electrical Engineering, Indian Institute of Technlogy Hyderabad, Hyderabad, India
– sequence: 2
  givenname: P.
  surname: Rajalakshmi
  fullname: Rajalakshmi, P.
  email: raji@iith.ac.in
  organization: WiNet Laboratory, Dept. of Electrical Engineering, Indian Institute of Technlogy Hyderabad, Hyderabad, India
– sequence: 3
  givenname: Mukesh Kumar
  surname: Giluka
  fullname: Giluka, Mukesh Kumar
  email: cs11p1002@iith.ac.in
  organization: Dept. of Computer Science & Engineering, Indian Institute of Technlogy Hyderabad, Hyderabad, India
– sequence: 4
  givenname: Bheemarjuna Reddy
  surname: Tamma
  fullname: Tamma, Bheemarjuna Reddy
  email: tbr@iith.ac.in
  organization: Dept. of Computer Science & Engineering, Indian Institute of Technlogy Hyderabad, Hyderabad, India
BookMark eNotkM9KAzEYxCPoQWufoJc8gLvm37rJsVSrhYIiCx7Ll-RbDOxuSjYr1Ke3tT3NMMxvDnNHroc4ICELzkrOmXn8Wheb2JSCcV1qWVVc6ysyN7Xm6qmWxihlbklc0iH-YEfHw5ixp5Dcd8jo8pSQtjHRhNAVOfT4QFO005gpDJ6Cc1OCjPQI7anHExHi8E98PH9SCyN6GgYfj0EXHXThF06Ne3LTQjfi_KIz0qxfmtVbsX1_3ayW2yIYlovat7zmSqKtgFcShLWgDXPGV61SR1c7XXklpXMcBWNaAApZAzBhJSovZ2Rxng2IuNun0EM67C4vyD9vh1h3
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WF-IoT.2018.8355188
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467399449
1467399442
EndPage 759
ExternalDocumentID 8355188
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-7df17143eb5a153a2bba890c9d5f448907c85d433cc1e20082ae237aa02b3e4d3
IEDL.DBID RIE
IngestDate Wed Jul 23 05:50:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-7df17143eb5a153a2bba890c9d5f448907c85d433cc1e20082ae237aa02b3e4d3
PageCount 6
ParticipantIDs ieee_primary_8355188
PublicationCentury 2000
PublicationDate 2018-Feb.
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-Feb.
PublicationDecade 2010
PublicationTitle 2018 IEEE 4th World Forum on Internet of Things (WF-IoT)
PublicationTitleAbbrev WF-IoT
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6854784
Snippet Indoor localization is currently of good interest concerning both business viability and end user experience. In this paper, we propose an accurate and robust...
SourceID ieee
SourceType Publisher
StartPage 754
SubjectTerms Acceleration
Accelerometers
Gravity
Indoor localization
Legged locomotion
PDR
Real-time systems
Robustness
SLAM
Step detection
Wireless fidelity
Title A novel system architecture for real-time, robust and accurate step detection for PDR based indoor localization
URI https://ieeexplore.ieee.org/document/8355188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6tePCk0opv5uCxaffZZI-iFgUpRQr2VrKZWSiUTWl3-_tNsktV8OIthITAZMg88s03jD3oIspQ6IKTVSZuPXDk7vuOj62yoBSYJuQp89_FdCoXi2zWYYNDLQwRefAZDd3Q_-Wj0bVLlY2st-D4w7qsK8S4qdVqiYTCIBt9TvibmTu0lhy2K3-1TPEWY3L6v7POWP-79A5mB6NyzjpU9ph5hNLsaQ0N7zL8zP6D9TrBen5r7trED2Br8npXgSoRlNa1Y4IAu2kDSJWHXZV-x-z5A5wFQ7BBubET3qi1RZl9Np-8zJ9eedspga-yoOICC9_HnPJU2RdMRXmuZBboDNPChl82_tUyxSSOtQ7JAR4iRVEslAqiPKYE4wt2VJqSLhmQtvGFikIttaOtiSWONWJASZjkiorwivWcrJabhgtj2Yrp-u_pG3birqNBOd-yo2pb0x071vtqtdve-wv8Ah2ioJs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFPRJZRO_zYOPy9bPtX0UtWw4x5CCextp7gqD0Y6t3d9vkpap4ItvISQELkfuI7_7HcCjzJwIA5lxUsrElQeOXH_f8aFSFgwD9D0ylPmTYDoN5_No1oLevhaGiAz4jPp6aP7ysZCVTpUNlLeg-cMO4ND3PMeqq7UaKiHbigafMR8XicZrhf1m7a-mKcZmxKf_O-0Mut_Fd2y2Nyvn0KK8A8UTy4sdrVjNvMx-5v-Z8juZ8v1WXDeK77FNkVbbkokcmZCy0lwQTG1aM6TSAK9ys2P28sG0DUOmwvJCTRiz1pRldiGJX5PnEW96JfBlZJU8wMx0MqfUF-oNE06aijCyZIR-pgIwFQHL0EfPdaW0SUMeHEGOGwhhOalLHroX0M6LnC6BkVQRhnBsGUpNXOOGOJSIFnm2lwrK7CvoaFkt1jUbxqIR0_Xf0w9wPEreJ4vJePp2Ayf6amrM8y20y01Fd3Akd-Vyu7k3l_kFojmj4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+4th+World+Forum+on+Internet+of+Things+%28WF-IoT%29&rft.atitle=A+novel+system+architecture+for+real-time%2C+robust+and+accurate+step+detection+for+PDR+based+indoor+localization&rft.au=Kiran%2C+M.+P.+R.+S.&rft.au=Rajalakshmi%2C+P.&rft.au=Giluka%2C+Mukesh+Kumar&rft.au=Tamma%2C+Bheemarjuna+Reddy&rft.date=2018-02-01&rft.pub=IEEE&rft.spage=754&rft.epage=759&rft_id=info:doi/10.1109%2FWF-IoT.2018.8355188&rft.externalDocID=8355188