Histogram spectra for multivariate time-varying volume LOD selection

Level of detail techniques are widely applied to minimize sampling error subject to working set size constraints. Typical large data sets being produced today have many variables sampled across time-varying volumes. Visualization of these multivariate volumes is commonly phrased in terms of conditio...

Full description

Saved in:
Bibliographic Details
Published in:2011 IEEE Symposium on Large Data Analysis and Visualization pp. 39 - 46
Main Authors: Martin, S., Han-Wei Shen
Format: Conference Proceeding
Language:English
Published: IEEE 01.10.2011
Subjects:
ISBN:9781467301565, 1467301566
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Level of detail techniques are widely applied to minimize sampling error subject to working set size constraints. Typical large data sets being produced today have many variables sampled across time-varying volumes. Visualization of these multivariate volumes is commonly phrased in terms of conditional expressions such as "show variable A where variable B is between B 1 and B 2 ." The bounds, B 1 and B 2 , tend to be specified during the interactive portion of the workflow. Thus, to maximize quality over the salient interval, level of detail selection should also be interactive. We introduce the concept of histogram spectra to quickly and compactly quantify the statistical sensitivity of volumes to sampling. Salient interval volumes of one or more variables are used to select which parts of the histogram spectra are important. The level of detail selection problem, over a time-varying, multivariate, multiresolution volume, is then posed as an integer programming problem using the histogram spectra. We propose an efficient solution enabling interactive LOD selection on large, out-of-core volumes and show its efficacy on two real data sets from different problem domains.
AbstractList Level of detail techniques are widely applied to minimize sampling error subject to working set size constraints. Typical large data sets being produced today have many variables sampled across time-varying volumes. Visualization of these multivariate volumes is commonly phrased in terms of conditional expressions such as "show variable A where variable B is between B 1 and B 2 ." The bounds, B 1 and B 2 , tend to be specified during the interactive portion of the workflow. Thus, to maximize quality over the salient interval, level of detail selection should also be interactive. We introduce the concept of histogram spectra to quickly and compactly quantify the statistical sensitivity of volumes to sampling. Salient interval volumes of one or more variables are used to select which parts of the histogram spectra are important. The level of detail selection problem, over a time-varying, multivariate, multiresolution volume, is then posed as an integer programming problem using the histogram spectra. We propose an efficient solution enabling interactive LOD selection on large, out-of-core volumes and show its efficacy on two real data sets from different problem domains.
Author Han-Wei Shen
Martin, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Martin
  fullname: Martin, S.
  email: martinst@cse.ohio-state.edu
  organization: Ohio State Univ., Columbus, OH, USA
– sequence: 2
  surname: Han-Wei Shen
  fullname: Han-Wei Shen
  email: hwshen@cse.ohio-state.edu
  organization: Ohio State Univ., Columbus, OH, USA
BookMark eNo1j89KAzEYxCMqaOs-gHjJC-yabHaTfMfSVSss9FK8ljT7pUT2T9mkBd_egHUuw-8ww8yC3I3TiIQ8c1ZwzuC1bVZfRck4LySDUvD6hix4JZVgvK71LclA6X-W9QPJQvhmSVKC1vKRNBsf4nSczUDDCW2cDXXTTIdzH_3FzN5EpNEPmCf48eORXqb-PCBttw0N2KeEn8Yncu9MHzC7-pLs3t92603ebj8-16s298BirjoluoOtseKOW6g6LNGAAw2asTQOpHIOK2EPWhqJlVacKZsYJAptQSzJy1-tR8T9afZD2rS__ha_JaFNzg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/LDAV.2011.6092315
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467301558
9781467301558
EndPage 46
ExternalDocumentID 6092315
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-7d73dbc5e41f1c94de2ea9f989800565967ffe43cb86a6e487107c43c96e38c93
IEDL.DBID RIE
ISBN 9781467301565
1467301566
IngestDate Wed Aug 27 03:10:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-7d73dbc5e41f1c94de2ea9f989800565967ffe43cb86a6e487107c43c96e38c93
PageCount 8
ParticipantIDs ieee_primary_6092315
PublicationCentury 2000
PublicationDate 2011-Oct.
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-Oct.
PublicationDecade 2010
PublicationTitle 2011 IEEE Symposium on Large Data Analysis and Visualization
PublicationTitleAbbrev LDAV
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669886
Score 1.4926779
Snippet Level of detail techniques are widely applied to minimize sampling error subject to working set size constraints. Typical large data sets being produced today...
SourceID ieee
SourceType Publisher
StartPage 39
SubjectTerms Context
Data visualization
Equations
Histograms
Level of detail selection
Linear programming
Multivariate volume visualization
Optimization
Rendering (computer graphics)
Time-varying volume visualization
Title Histogram spectra for multivariate time-varying volume LOD selection
URI https://ieeexplore.ieee.org/document/6092315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQMToBbxLQ-MhCZ2bMcjolQMVelQoW6V65ylLinq1-_n7KRFSCxsuQxRYie5d_Z79wAeKWV5w5VNuBc2yUukT0oGJoDgkqP0LlU-mk3o8biYzcykBU9HLQwiRvIZPofDuJdfrtwuLJX1VRrgiGxDW2tVa7WO6ymUOk1RqKjdUuG1JZxyaOnUxLLZ1cxS0x8NXj7rBp7NRX-5q8TkMjz7322dQ-9Hpccmx_xzAS2sujCIfT8C5YpFEeXaMoKlLPIG91QXE7RkwU8-oSAonFj9e2KjjwHbRE8cmqgeTIdv09f3pHFKSJYm3Sa61KJcOIl55jNnaMQ5WuODNWRo9SmN0t5jLtyiUFYh1ShU9DmKjUJROCMuoVOtKrwCFryIpbDap0YQUuKFJfyUSr_gqHNv7DV0wwDMv-peGPPm2W_-Pn0Lp_zAmcvuoLNd7_AeTtx-u9ysH-IEfgM0Ppdp
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VggQToBbxjQdGQlM7duIRUaoiQulQoW6V65ylLi3q1-_n7KRFSCxsuQxRYie5d_Z79wDuKWU5zZWJuBMmSgqkT0p6JoDgkqN0NlYumE2k_X42GulBDR52WhhEDOQzfPSHYS-_mNu1XyprqdjDEbkH-zJJeFyqtXYrKpQ8dZapoN5S_sUlpLJt6lTFstrXbMe6lXeePssWntVlf_mrhPTSPf7fjZ1A80enxwa7DHQKNZw1oBM6f3jSFQsyyoVhBExZYA5uqDImcMm8o3xEgdc4sfIHxfKPDlsGVxyaqiYMuy_D515UeSVEUx2vorRIRTGxEpO2a1tNY87RaOfNIX2zT6lV6hwmwk4yZRRSlUJln6VYKxSZ1eIM6rP5DM-BeTdiKUzqYi0IK_HMEIKKpZtwTBOnzQU0_ACMv8puGOPq2S__Pn0Hh73hez7OX_tvV3DEtwy69jXUV4s13sCB3aymy8VtmMxvSpWasA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+Symposium+on+Large+Data+Analysis+and+Visualization&rft.atitle=Histogram+spectra+for+multivariate+time-varying+volume+LOD+selection&rft.au=Martin%2C+S.&rft.au=Han-Wei+Shen&rft.date=2011-10-01&rft.pub=IEEE&rft.isbn=9781467301565&rft.spage=39&rft.epage=46&rft_id=info:doi/10.1109%2FLDAV.2011.6092315&rft.externalDocID=6092315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/sc.gif&client=summon&freeimage=true