A non-data-aided algorithm based on ML for OFDM synchronization

Orthogonal frequency division multiplexing (OFDM) is more sensitive to symbol timing offset (STO) and carrier frequency offset (CFO) than single-carrier signals, which requires more accurate synchronization algorithms. In this paper, the traditional ML synchronization algorithm is improved by accumu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2018 International Conference on Electronics Technology (ICET) S. 1 - 6
Hauptverfasser: An, Jiancheng, Gan, Lu, Liao, Hongshu
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.05.2018
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Orthogonal frequency division multiplexing (OFDM) is more sensitive to symbol timing offset (STO) and carrier frequency offset (CFO) than single-carrier signals, which requires more accurate synchronization algorithms. In this paper, the traditional ML synchronization algorithm is improved by accumulating multiple OFDM symbols, and joint estimation of symbol timing offset and carrier frequency offset is accomplished without data aiding. The simulation illustrates that the improved ML algorithm has a higher accuracy for STO estimation and a lower MSE for CFO estimation.
DOI:10.1109/ELTECH.2018.8401408