On edge detection based on new intuitionistic fuzzy divergence and entropy measures

Edges of the image plays an important role in the field of digital image processing and computer vision. It reduces the amount of data, extract useful information from the image and also preserve significant structural properties of an input image. Further, it can be used in object and facial expres...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC) s. 689 - 693
Hlavní autoři: Ansari, Mohd Dilshad, Mishra, Arunodaya Raj, Ansari, Farhina Tabassum, Chawla, Meenu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2016
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Edges of the image plays an important role in the field of digital image processing and computer vision. It reduces the amount of data, extract useful information from the image and also preserve significant structural properties of an input image. Further, it can be used in object and facial expression detection. In this paper, we have proposed new intuitionistic fuzzy divergence and entropy measures with its proof of validity for an intuitionistic fuzzy sets. A new and significant technique has been developed for edge detection. The proposed method has been demonstrated on various sample images. The detected edges of the sample images are true, smooth and sharpen which is found to be better than existing methods.
DOI:10.1109/PDGC.2016.7913210