A Distributed Parallel Genetic Algorithm oriented adaptive migration strategy
Distributed Parallel Genetic Algorithm is the most widely a parallel genetic algorithm. It has natural parallelism and has high performance in solving complex, large-scale, non-linear, non-differentiable optimization problems. This paper analyzes the traditional limitations of distributed parallel g...
Saved in:
| Published in: | 2012 8th International Conference on Natural Computation pp. 592 - 595 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.05.2012
|
| Subjects: | |
| ISBN: | 9781457721304, 1457721309 |
| ISSN: | 2157-9555 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Distributed Parallel Genetic Algorithm is the most widely a parallel genetic algorithm. It has natural parallelism and has high performance in solving complex, large-scale, non-linear, non-differentiable optimization problems. This paper analyzes the traditional limitations of distributed parallel genetic algorithms, for its migration fixed blindness and other disadvantages. A Distributed Parallel Genetic Algorithm oriented adaptive migration strategy (AMDPGA) was proposed in this paper, which was suitable for running on the current parallel computers. This Implementation combines the Distributed Parallel Genetic Algorithm and current computer architecture, which makes the Distributed Parallel Genetic Algorithm execute on the mainstream computer concurrently and improve the convergent speed. The experiments showed that this algorithm has not only faster convergent speed but also has more accurate precision and overcome more faults as well as higher parallel efficiency. |
|---|---|
| AbstractList | Distributed Parallel Genetic Algorithm is the most widely a parallel genetic algorithm. It has natural parallelism and has high performance in solving complex, large-scale, non-linear, non-differentiable optimization problems. This paper analyzes the traditional limitations of distributed parallel genetic algorithms, for its migration fixed blindness and other disadvantages. A Distributed Parallel Genetic Algorithm oriented adaptive migration strategy (AMDPGA) was proposed in this paper, which was suitable for running on the current parallel computers. This Implementation combines the Distributed Parallel Genetic Algorithm and current computer architecture, which makes the Distributed Parallel Genetic Algorithm execute on the mainstream computer concurrently and improve the convergent speed. The experiments showed that this algorithm has not only faster convergent speed but also has more accurate precision and overcome more faults as well as higher parallel efficiency. |
| Author | Ying Huang Wei Li |
| Author_xml | – sequence: 1 surname: Wei Li fullname: Wei Li email: nhwslw@gmail.com organization: Sch. of Inf. Eng., Jiangxi Univ. of Sci. & Technol., Ganzhou, China – sequence: 2 surname: Ying Huang fullname: Ying Huang email: nhwshy@gmail.com organization: Sch. of Math. & Comput. Sci., Gannan Normal Univ., Ganzhou, China |
| BookMark | eNpVkM1OwkAUhceIiYh9AONmXqA4f7czsyRVkAR_FuzJ7fQWx5RC2tGEtxcjG8_my0lOvsW5YaNu3xFjd1JMpRT-YVm-llMlpJoWShtw5oJl3jppwFoltXKX_7owIzZWEmzuAeCaZcPwKU6xIF1hxuxlxh_jkPpYfSWq-Tv22LbU8gV1lGLgs3a772P62PETqPvdYI2HFL-J7-K2xxT3HT8JMNH2eMuuGmwHys6csPX8aV0-56u3xbKcrfLoRcqtbKwNEhpde-81BEtYacDCBROcJFSAVYVQuyBko4woNJInF7xxqqhAT9j9nzYS0ebQxx32x835D_0DPp9T1g |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICNC.2012.6234584 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781457721328 1457721325 9781457721335 1457721333 |
| EndPage | 595 |
| ExternalDocumentID | 6234584 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-71f77c15f3d99935c7eab35a68c4c81ea25abba5d8c01f24063ae9e8c94826b53 |
| IEDL.DBID | RIE |
| ISBN | 9781457721304 1457721309 |
| ISSN | 2157-9555 |
| IngestDate | Wed Aug 27 04:32:42 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-71f77c15f3d99935c7eab35a68c4c81ea25abba5d8c01f24063ae9e8c94826b53 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_6234584 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-May |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-May |
| PublicationDecade | 2010 |
| PublicationTitle | 2012 8th International Conference on Natural Computation |
| PublicationTitleAbbrev | ICNC |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000751864 ssj0003177709 |
| Score | 1.5253546 |
| Snippet | Distributed Parallel Genetic Algorithm is the most widely a parallel genetic algorithm. It has natural parallelism and has high performance in solving complex,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 592 |
| SubjectTerms | Adaptive Migration Strategy Algorithm design and analysis Computers Convergence Distributed Parallel Algorithm Educational institutions Function Optimization Genetic Algorithm Genetic algorithms Optimization Synchronization |
| Title | A Distributed Parallel Genetic Algorithm oriented adaptive migration strategy |
| URI | https://ieeexplore.ieee.org/document/6234584 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zePCksom_ycGj3Zp2aZLjmA4FHTsM2W0k6dssbOvoOsH_3ry0TgQv3ppSSHlN3_eS773vEXKHoOZCexMY5_oCh7dpIA3ngbYMlGZRInzTvrcXMRrJ6VSNG-R-XwsDAD75DDp46bn8NLc7PCrrOqhGWu-AHAiRVLVa-_OUEPmDOvTHscNFIXyGhwM1ZCk593Vd3IWTzm-rb7mnetyrGU8Wqu7zYDTApK-oU0_4q_OKB57h8f9e-YS0fyr46HiPTaekAesWee3TB9TJxRZXkNKxLrCRypKi9LRbP7S_XORFVr6vaI7qx_iMTvUGHSJdZYtqrdBtpWf72SaT4eNk8BTU7RSCTIVlINhcCMv4PE5dUBhzK0CbmOtE2p6VDHTEtTGap9KGbI5AH2tQIK3quS2I4fEZaa7zNZwTCszNrrhUuJsEcFGclsa6X9sYSCAKL0gLLTHbVIIZs9oIl3_fviJHaOwqi_CaNMtiBzfk0H6U2ba49V_5C7x0oME |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSkBoy_7cGjg_0qbY8EJRBh4UAMN9J2DyQBRsYw8b-3b5sYEy_e1mVJl7fufa_93vseIY8Iaja01462rs-xeBs7QjPmKOOBVJ7f4nnTvrcBjyIxmchRhTzta2EAIE8-gwZe5lx-nJgdHpU1LVQjrXdADlkY-m5RrbU_UXGRQSiDfxxbZOQ8z_GwsIY8JWN5ZRezAaX13PJb8KkchyXn6bmy2e9EHUz78hvllL96r-TQ0z3930ufkfpPDR8d7dHpnFRgXSPDNn1GpVxscgUxHakUW6ksKYpP2xVE28t5ki6y9xVNUP8Yn1Gx2qBLpKvFvFgtdFso2n7Wybj7Mu70nLKhgrOQbuZwb8a58dgsiG1YGDDDQemAqZYwoREeKJ8prRWLhXG9GUJ9oECCMDK0mxDNggtSXSdruCQUPDu7ZELifhLAxnFKaGN_bq2hBb57RWpoiemmkMyYlka4_vv2AznujYeD6aAfvd6QEzR8kVN4S6pZuoM7cmQ-ssU2vc-_-BdPbaQI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+8th+International+Conference+on+Natural+Computation&rft.atitle=A+Distributed+Parallel+Genetic+Algorithm+oriented+adaptive+migration+strategy&rft.au=Wei+Li&rft.au=Ying+Huang&rft.date=2012-05-01&rft.pub=IEEE&rft.isbn=9781457721304&rft.issn=2157-9555&rft.spage=592&rft.epage=595&rft_id=info:doi/10.1109%2FICNC.2012.6234584&rft.externalDocID=6234584 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-9555&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-9555&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-9555&client=summon |

