A framework for uncertainty-aware visual analytics
Visual analytics has become an important tool for gaining insight on large and complex collections of data. Numerous statistical tools and data transformations, such as projections, binning and clustering, have been coupled with visualization to help analysts understand data better and faster. Howev...
Gespeichert in:
| Veröffentlicht in: | 2009 IEEE Symposium on Visual Analytics Science and Technology S. 51 - 58 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.10.2009
|
| Schlagworte: | |
| ISBN: | 9781424452835, 142445283X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Visual analytics has become an important tool for gaining insight on large and complex collections of data. Numerous statistical tools and data transformations, such as projections, binning and clustering, have been coupled with visualization to help analysts understand data better and faster. However, data is inherently uncertain, due to error, noise or unreliable sources. When making decisions based on uncertain data, it is important to quantify and present to the analyst both the aggregated uncertainty of the results and the impact of the sources of that uncertainty. In this paper, we present a new framework to support uncertainty in the visual analytics process, through statistic methods such as uncertainty modeling, propagation and aggregation. We show that data transformations, such as regression, principal component analysis and k-means clustering, can be adapted to account for uncertainty. This framework leads to better visualizations that improve the decision-making process and help analysts gain insight on the analytic process itself. |
|---|---|
| AbstractList | Visual analytics has become an important tool for gaining insight on large and complex collections of data. Numerous statistical tools and data transformations, such as projections, binning and clustering, have been coupled with visualization to help analysts understand data better and faster. However, data is inherently uncertain, due to error, noise or unreliable sources. When making decisions based on uncertain data, it is important to quantify and present to the analyst both the aggregated uncertainty of the results and the impact of the sources of that uncertainty. In this paper, we present a new framework to support uncertainty in the visual analytics process, through statistic methods such as uncertainty modeling, propagation and aggregation. We show that data transformations, such as regression, principal component analysis and k-means clustering, can be adapted to account for uncertainty. This framework leads to better visualizations that improve the decision-making process and help analysts gain insight on the analytic process itself. |
| Author | Yu-Hsuan Chan Correa, C.D. Kwan-Liu Ma |
| Author_xml | – sequence: 1 givenname: C.D. surname: Correa fullname: Correa, C.D. organization: Univ. of California at Davis, Davis, CA, USA – sequence: 2 surname: Yu-Hsuan Chan fullname: Yu-Hsuan Chan organization: Univ. of California at Davis, Davis, CA, USA – sequence: 3 surname: Kwan-Liu Ma fullname: Kwan-Liu Ma organization: Univ. of California at Davis, Davis, CA, USA |
| BookMark | eNotj0tLw0AUhQe0oK35AeImfyBxHrnzWIbiCwouDG7L7fQOjKaJTFJL_r0p9mzO4uOcw1my667viLF7wUshuHv8rD-aUnLuSlBKaiGuWOaMFZWsKpBWwYItz9gpMBZuWDYMX3zWGYK9ZbLOQ8IDnfr0nYc-5cfOUxoxduNU4AkT5b9xOGKbY4ftNEY_3LFFwHag7OIr1jw_NevXYvP-8rauN0V0fCw0WeO9NfP0TihE5WWQQRitwJNGa0k7VwkADXvt9sTdTkKwFOaYEdKoFXv4r41EtP1J8YBp2l5eqj_Y-Ea- |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/VAST.2009.5332611 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 58 |
| ExternalDocumentID | 5332611 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i90t-6e87cc87099b13aa3c2f2f17635ce6a88e699415565d69de09b25f8ef87c71273 |
| IEDL.DBID | RIE |
| ISBN | 9781424452835 142445283X |
| IngestDate | Wed Aug 27 02:33:02 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2009935785 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-6e87cc87099b13aa3c2f2f17635ce6a88e699415565d69de09b25f8ef87c71273 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_5332611 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-Oct. |
| PublicationDateYYYYMMDD | 2009-10-01 |
| PublicationDate_xml | – month: 10 year: 2009 text: 2009-Oct. |
| PublicationDecade | 2000 |
| PublicationTitle | 2009 IEEE Symposium on Visual Analytics Science and Technology |
| PublicationTitleAbbrev | VAST |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000452858 |
| Score | 1.6416717 |
| Snippet | Visual analytics has become an important tool for gaining insight on large and complex collections of data. Numerous statistical tools and data... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 51 |
| SubjectTerms | Blogs Data analysis Data Transformations Data visualization Decision making Humans Model Fitting Principal component analysis Sampling methods Statistical analysis Uncertainty Visual analytics |
| Title | A framework for uncertainty-aware visual analytics |
| URI | https://ieeexplore.ieee.org/document/5332611 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eCpait-k4NHY7NbN5sci1g8SClYSm8lHxMoSCvtbsV_b5LdrQhevGUDu-SDMG8zb94DuPMRI5dWaaodMvqIxtFg6k6dsjoZWO7yyCacvebjsZjP5aQF9_taGESM5DN8CM2Yy7drU4arsr6HJh7w-3-dgzznVa3W_j4lSIOLTDS1W0GzZN5IOtXPWZ3VTJjsz4Zv00qtsv7oL3eVGFxGnf8N6xh6P1V6ZLKPPyfQwtUpdBqbBlKf2i6kQ-IaChbxGJX4UFYRAYovqj7VBsluuS3VO1FBoSToNvdgOnqePr3Q2iqBLiUrKEeRG-OPnpR-hZUamNSlLglicwa5EgK5lAE68MxyaZFJnWZOoPOv5YlHMGfQXq1XeA7EWpZopjIdbEiUFUpnzDrJpBU8sdpcQDeswOKjEsNY1JO__Lv7Co5i-iWy366hXWxKvIFDsyuW281t3MFvV2KY1g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL2UKuiqaiu-zcKlsZlpZyZZFrFUrKXgULoredxAQVpppxX_3mQeFcGNu0xghjwI90zuuecA3LmIkQgjFVUWGe2ittSbulMrjQo6JrZJziacDJPRiE-nYlyD-10tDCLm5DN88M08l2-WeuOvytoOmjjA7_519qJuN2RFtdbuRsWLg_OIV9VbXrVkWok6lc9RmdcMmGhPem9poVdZfvaXv0oeXvqN_w3sCFo_dXpkvItAx1DDxQk0KqMGUp7bJoQ9YisSFnEolbhgVlABsi8qP-UKyXa-3sh3Ir1GiVdubkHaf0ofB7Q0S6BzwTIaI0-0dodPCLfGUnZ0aEMbeLk5jbHkHGMhPHiIIxMLg0yoMLIcrXstCRyGOYX6YrnAMyDGsEAxGSlvRCINlypixgomDI8Do_Q5NP0KzD4KOYxZOfmLv7tv4WCQvg5nw-fRyyUc5smYnAt3BfVstcFr2NfbbL5e3eS7-Q2Arpwd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Symposium+on+Visual+Analytics+Science+and+Technology&rft.atitle=A+framework+for+uncertainty-aware+visual+analytics&rft.au=Correa%2C+C.D.&rft.au=Yu-Hsuan+Chan&rft.au=Kwan-Liu+Ma&rft.date=2009-10-01&rft.pub=IEEE&rft.isbn=9781424452835&rft.spage=51&rft.epage=58&rft_id=info:doi/10.1109%2FVAST.2009.5332611&rft.externalDocID=5332611 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452835/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452835/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452835/sc.gif&client=summon&freeimage=true |

