A framework for uncertainty-aware visual analytics

Visual analytics has become an important tool for gaining insight on large and complex collections of data. Numerous statistical tools and data transformations, such as projections, binning and clustering, have been coupled with visualization to help analysts understand data better and faster. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2009 IEEE Symposium on Visual Analytics Science and Technology S. 51 - 58
Hauptverfasser: Correa, C.D., Yu-Hsuan Chan, Kwan-Liu Ma
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2009
Schlagworte:
ISBN:9781424452835, 142445283X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Visual analytics has become an important tool for gaining insight on large and complex collections of data. Numerous statistical tools and data transformations, such as projections, binning and clustering, have been coupled with visualization to help analysts understand data better and faster. However, data is inherently uncertain, due to error, noise or unreliable sources. When making decisions based on uncertain data, it is important to quantify and present to the analyst both the aggregated uncertainty of the results and the impact of the sources of that uncertainty. In this paper, we present a new framework to support uncertainty in the visual analytics process, through statistic methods such as uncertainty modeling, propagation and aggregation. We show that data transformations, such as regression, principal component analysis and k-means clustering, can be adapted to account for uncertainty. This framework leads to better visualizations that improve the decision-making process and help analysts gain insight on the analytic process itself.
AbstractList Visual analytics has become an important tool for gaining insight on large and complex collections of data. Numerous statistical tools and data transformations, such as projections, binning and clustering, have been coupled with visualization to help analysts understand data better and faster. However, data is inherently uncertain, due to error, noise or unreliable sources. When making decisions based on uncertain data, it is important to quantify and present to the analyst both the aggregated uncertainty of the results and the impact of the sources of that uncertainty. In this paper, we present a new framework to support uncertainty in the visual analytics process, through statistic methods such as uncertainty modeling, propagation and aggregation. We show that data transformations, such as regression, principal component analysis and k-means clustering, can be adapted to account for uncertainty. This framework leads to better visualizations that improve the decision-making process and help analysts gain insight on the analytic process itself.
Author Yu-Hsuan Chan
Correa, C.D.
Kwan-Liu Ma
Author_xml – sequence: 1
  givenname: C.D.
  surname: Correa
  fullname: Correa, C.D.
  organization: Univ. of California at Davis, Davis, CA, USA
– sequence: 2
  surname: Yu-Hsuan Chan
  fullname: Yu-Hsuan Chan
  organization: Univ. of California at Davis, Davis, CA, USA
– sequence: 3
  surname: Kwan-Liu Ma
  fullname: Kwan-Liu Ma
  organization: Univ. of California at Davis, Davis, CA, USA
BookMark eNotj0tLw0AUhQe0oK35AeImfyBxHrnzWIbiCwouDG7L7fQOjKaJTFJL_r0p9mzO4uOcw1my667viLF7wUshuHv8rD-aUnLuSlBKaiGuWOaMFZWsKpBWwYItz9gpMBZuWDYMX3zWGYK9ZbLOQ8IDnfr0nYc-5cfOUxoxduNU4AkT5b9xOGKbY4ftNEY_3LFFwHag7OIr1jw_NevXYvP-8rauN0V0fCw0WeO9NfP0TihE5WWQQRitwJNGa0k7VwkADXvt9sTdTkKwFOaYEdKoFXv4r41EtP1J8YBp2l5eqj_Y-Ea-
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VAST.2009.5332611
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 58
ExternalDocumentID 5332611
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i90t-6e87cc87099b13aa3c2f2f17635ce6a88e699415565d69de09b25f8ef87c71273
IEDL.DBID RIE
ISBN 9781424452835
142445283X
IngestDate Wed Aug 27 02:33:02 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009935785
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-6e87cc87099b13aa3c2f2f17635ce6a88e699415565d69de09b25f8ef87c71273
PageCount 8
ParticipantIDs ieee_primary_5332611
PublicationCentury 2000
PublicationDate 2009-Oct.
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-Oct.
PublicationDecade 2000
PublicationTitle 2009 IEEE Symposium on Visual Analytics Science and Technology
PublicationTitleAbbrev VAST
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452858
Score 1.6416717
Snippet Visual analytics has become an important tool for gaining insight on large and complex collections of data. Numerous statistical tools and data...
SourceID ieee
SourceType Publisher
StartPage 51
SubjectTerms Blogs
Data analysis
Data Transformations
Data visualization
Decision making
Humans
Model Fitting
Principal component analysis
Sampling methods
Statistical analysis
Uncertainty
Visual analytics
Title A framework for uncertainty-aware visual analytics
URI https://ieeexplore.ieee.org/document/5332611
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eCpait-k4NHY7NbN5sci1g8SClYSm8lHxMoSCvtbsV_b5LdrQhevGUDu-SDMG8zb94DuPMRI5dWaaodMvqIxtFg6k6dsjoZWO7yyCacvebjsZjP5aQF9_taGESM5DN8CM2Yy7drU4arsr6HJh7w-3-dgzznVa3W_j4lSIOLTDS1W0GzZN5IOtXPWZ3VTJjsz4Zv00qtsv7oL3eVGFxGnf8N6xh6P1V6ZLKPPyfQwtUpdBqbBlKf2i6kQ-IaChbxGJX4UFYRAYovqj7VBsluuS3VO1FBoSToNvdgOnqePr3Q2iqBLiUrKEeRG-OPnpR-hZUamNSlLglicwa5EgK5lAE68MxyaZFJnWZOoPOv5YlHMGfQXq1XeA7EWpZopjIdbEiUFUpnzDrJpBU8sdpcQDeswOKjEsNY1JO__Lv7Co5i-iWy366hXWxKvIFDsyuW281t3MFvV2KY1g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL2UKuiqaiu-zcKlsZlpZyZZFrFUrKXgULoredxAQVpppxX_3mQeFcGNu0xghjwI90zuuecA3LmIkQgjFVUWGe2ittSbulMrjQo6JrZJziacDJPRiE-nYlyD-10tDCLm5DN88M08l2-WeuOvytoOmjjA7_519qJuN2RFtdbuRsWLg_OIV9VbXrVkWok6lc9RmdcMmGhPem9poVdZfvaXv0oeXvqN_w3sCFo_dXpkvItAx1DDxQk0KqMGUp7bJoQ9YisSFnEolbhgVlABsi8qP-UKyXa-3sh3Ir1GiVdubkHaf0ofB7Q0S6BzwTIaI0-0dodPCLfGUnZ0aEMbeLk5jbHkHGMhPHiIIxMLg0yoMLIcrXstCRyGOYX6YrnAMyDGsEAxGSlvRCINlypixgomDI8Do_Q5NP0KzD4KOYxZOfmLv7tv4WCQvg5nw-fRyyUc5smYnAt3BfVstcFr2NfbbL5e3eS7-Q2Arpwd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Symposium+on+Visual+Analytics+Science+and+Technology&rft.atitle=A+framework+for+uncertainty-aware+visual+analytics&rft.au=Correa%2C+C.D.&rft.au=Yu-Hsuan+Chan&rft.au=Kwan-Liu+Ma&rft.date=2009-10-01&rft.pub=IEEE&rft.isbn=9781424452835&rft.spage=51&rft.epage=58&rft_id=info:doi/10.1109%2FVAST.2009.5332611&rft.externalDocID=5332611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452835/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452835/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452835/sc.gif&client=summon&freeimage=true