Gröbner bases for lattices and an algebraic decoding algorithm

In this paper we present Grobner bases for lattices. Grobner bases for binary linear codes were introduced by Borges et al. [3]. We extend their work to non-binary group block codes. Given a lattice Λ and its associated label code L, which is a group code, we define an ideal for L. A Grobner basis i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 49th Annual Allerton Conference on Communication, Control, and Computing s. 1414 - 1415
Hlavní autoři: Aliasgari, Malihe, Sadeghi, Mohammad-Reza, Panario, Daniel
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2011
Témata:
ISBN:1457718170, 9781457718175
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we present Grobner bases for lattices. Grobner bases for binary linear codes were introduced by Borges et al. [3]. We extend their work to non-binary group block codes. Given a lattice Λ and its associated label code L, which is a group code, we define an ideal for L. A Grobner basis is assigned to Λ as the Grobner basis of its label code L. Using this Grobner basis an algebraic decoding algorithm is introduced.
ISBN:1457718170
9781457718175
DOI:10.1109/Allerton.2011.6120333