KNN-kernel based clustering for spatio-temporal database

Extracting and analyzing the interesting patterns from spatio-temporal databases, have drawn a great interest in various fields of research. Recently, a number of experiments have explored the problem of spatial or temporal data mining, and some clustering algorithms have been proposed. However, not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 International Conference on Computer and Communication Engineering S. 1 - 6
Hauptverfasser: Musdholifah, Aina, Hashim, Siti Zaiton Bt Mohd, Wasito, Ito
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.05.2010
Schlagworte:
ISBN:9781424462339, 1424462339
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Extracting and analyzing the interesting patterns from spatio-temporal databases, have drawn a great interest in various fields of research. Recently, a number of experiments have explored the problem of spatial or temporal data mining, and some clustering algorithms have been proposed. However, not many studies have been dealing with the integration of spatial data mining and temporal data mining. Moreover, the data in spatial temporal database can be categorized as high-dimensional data. Current density-based clustering might have difficulties with complex data sets including high-dimensional data. This paper presents Iterative Local Gaussian Clustering (ILGC), an algorithm that combines K-nearest neighbour (KNN) density estimation and Kernel density estimation, to cluster the spatiotemporal data. In this approach, the KNN density estimation is extended and combined with Kernel function, where KNN contributes in determining the best local data iteratively for kernel density estimation. The local best is defined as the set of neighbour data that maximizes the kernel function. Bayesian rule is used to deal with the problem of selecting the best local data. This paper utilized Gaussian kernel which has been proven successful in the clustering. To validate the KNN-kernel based algorithm, we compare its performance againts other popular algorithms, such as Self Organizing Maps (SOM) and K-Means, on Crime database. Results show that KNN-kernel based clustering has outperformed others.
AbstractList Extracting and analyzing the interesting patterns from spatio-temporal databases, have drawn a great interest in various fields of research. Recently, a number of experiments have explored the problem of spatial or temporal data mining, and some clustering algorithms have been proposed. However, not many studies have been dealing with the integration of spatial data mining and temporal data mining. Moreover, the data in spatial temporal database can be categorized as high-dimensional data. Current density-based clustering might have difficulties with complex data sets including high-dimensional data. This paper presents Iterative Local Gaussian Clustering (ILGC), an algorithm that combines K-nearest neighbour (KNN) density estimation and Kernel density estimation, to cluster the spatiotemporal data. In this approach, the KNN density estimation is extended and combined with Kernel function, where KNN contributes in determining the best local data iteratively for kernel density estimation. The local best is defined as the set of neighbour data that maximizes the kernel function. Bayesian rule is used to deal with the problem of selecting the best local data. This paper utilized Gaussian kernel which has been proven successful in the clustering. To validate the KNN-kernel based algorithm, we compare its performance againts other popular algorithms, such as Self Organizing Maps (SOM) and K-Means, on Crime database. Results show that KNN-kernel based clustering has outperformed others.
Author Musdholifah, Aina
Hashim, Siti Zaiton Bt Mohd
Wasito, Ito
Author_xml – sequence: 1
  givenname: Aina
  surname: Musdholifah
  fullname: Musdholifah, Aina
  email: non.nana@gmail.com
  organization: Fac. of Comput. Sci. & Inf. Syst., Univ. Teknol. Malaysia, Skudai, Malaysia
– sequence: 2
  givenname: Siti Zaiton Bt Mohd
  surname: Hashim
  fullname: Hashim, Siti Zaiton Bt Mohd
  email: sitizaiton@utm.my
  organization: Fac. of Comput. Sci. & Inf. Syst., Univ. Teknol. Malaysia, Skudai, Malaysia
– sequence: 3
  givenname: Ito
  surname: Wasito
  fullname: Wasito, Ito
  organization: Fac. of Comput. Sci., Univ. of Indonesia, Jakarta, Indonesia
BookMark eNo1j8tOwzAURI0ACVryA7DJD6T4nXiJrFIqqrLpvrqOr1EgTSLbLPh7giizOTrSaKRZkKthHJCQe0ZXjFHzuLXWrleczq6U0g1VF2TBJJdSc6HUJSlM3fy7MDekSOmDzpGKc0FvSfO631efGAfsSwcJfdn2Xylj7Ib3MoyxTBPkbqwynqYxQl96yPBbvCPXAfqExZlLcnheH-xLtXvbbO3TruoMzZX26JAF4z2TnoYmCAYGwbQza-e05MEwTV1rAGRLDXjvHDgvhHN1zaVYkoe_2Q4Rj1PsThC_j-ev4gcZjkqW
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCCE.2010.5556805
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1424462355
9781424462346
1424462347
9781424462353
EndPage 6
ExternalDocumentID 5556805
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-6debe1f9dd14d0f8f31a9ea9c31a7bb642f9160bc9aa4c09addbbabd33bb77243
IEDL.DBID RIE
ISBN 9781424462339
1424462339
IngestDate Wed Aug 27 02:53:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-6debe1f9dd14d0f8f31a9ea9c31a7bb642f9160bc9aa4c09addbbabd33bb77243
PageCount 6
ParticipantIDs ieee_primary_5556805
PublicationCentury 2000
PublicationDate 2010-May
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-May
PublicationDecade 2010
PublicationTitle 2010 International Conference on Computer and Communication Engineering
PublicationTitleAbbrev ICCCE
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452230
Score 1.4631033
Snippet Extracting and analyzing the interesting patterns from spatio-temporal databases, have drawn a great interest in various fields of research. Recently, a number...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bayesian methods
Bayesian rule
Clustering algorithms
Data mining
Estimation
Gaussian Kernel
Indexes
Iterative Local Gaussian Clustering
Kernel
Kernel clustering
KNN
Spatial databases
Spatio-temporal database
Title KNN-kernel based clustering for spatio-temporal database
URI https://ieeexplore.ieee.org/document/5556805
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwEBZp6NAufSSlbzR0rBopVmxpNgktBZMhQ7bg0wNCg1Py-v09KXbaQpdOehlj60DfSbrvO0KeUi256WvDvISQwswCAxAlQ8_EyxS4F97EZBNZUajpVI9b5PnAhXHOxeAz9xKq8S7fLs02HJX1BkEuKwiWHmVZuudqHc5TojR4whvuFqJ6ohtJp6bdkGa47r3leT7cR3bVb_2VXiWiy-jsf991TrrfND06PgDQBWm56pKc_lAY7BD1XhTsw60qt6ABsCw1i23QRsBRiv4qXceIalYrVC1oiBgND3bJZDSc5K-sTpbA5ppvWGrRGsJra4W03CufiFK7UhssMwDcZXh0BDkYXZbScI3LGkAJNkkA0MGWyRVpV8vKXRPa7zvsTpWRaK6B8gr328pnoKxBMNfihnTCFMw-93IYs_rvb__uviMnzYU7F_ekvVlt3QM5NrvNfL16jDb8Alemmhs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4QNFEvPsD4dg8eXdnSpeyeGwgEbDhw4Ea6r4RIquHh73d2aVETL57abjebtpP0m5md7xuAp0RypttSU8eVb2FmFFUqyil6Jo4nirnI6dBsoptlYjaTkxo877kw1tpQfGZf_GnYyzfveutTZa2Ol8vygqUHHY5xz46ttc-oBHHwmFXsLcT1WFaiTtV1RZthsjVM07S3q-0q1_3VYCXgS__0f092Bs1voh6Z7CHoHGq2uICTHxqDDRCjLKNvdlXYJfGQZYhebr06At4l6LGSdaippqVG1ZL4mlE_sQnTfm-aDmjZLoEuJNvQxKA9IieNibhhTrg4yqXNpcZjVymMMxy6gkxpmedcM4k_NqVyZeJYKXSxeXwJ9eK9sFdA2m2Lw4nQHA3WEU5gxC1cVwmjEc5ldA0N_wnmHztBjHn59jd_Dz_C0WD6Op6Ph9noFo6r7XcW3UF9s9raezjUn5vFevUQ7PkFkLKdYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Computer+and+Communication+Engineering&rft.atitle=KNN-kernel+based+clustering+for+spatio-temporal+database&rft.au=Musdholifah%2C+Aina&rft.au=Hashim%2C+Siti+Zaiton+Bt+Mohd&rft.au=Wasito%2C+Ito&rft.date=2010-05-01&rft.pub=IEEE&rft.isbn=9781424462339&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICCCE.2010.5556805&rft.externalDocID=5556805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424462339/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424462339/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424462339/sc.gif&client=summon&freeimage=true