A memetic algorithm for uncertain Capacitated Arc Routing Problems

The Capacitated Arc Routing Problem (CARP) is a widely investigated classic combinatorial optimization problem. Being a deterministic model, it is far away from the real world. A more practical problem model of CARP is the Uncertain CARP (UCARP), with the objective of finding a robust solution which...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2013 IEEE Workshop on Memetic Computing (MC) s. 72 - 79
Hlavní autori: Juan Wang, Ke Tang, Xin Yao
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2013
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Capacitated Arc Routing Problem (CARP) is a widely investigated classic combinatorial optimization problem. Being a deterministic model, it is far away from the real world. A more practical problem model of CARP is the Uncertain CARP (UCARP), with the objective of finding a robust solution which performs well in all possible environments. There exist few algorithms for UCARP in previous work. In this paper, a Memetic Algorithm (MA) and its modified version in time consumption for UCARP are proposed. Experimental results on two benchmark test sets show that with an integrated fitness function and a large step-size local search operator, the new MAs show excellent ability to find robust solutions for UCARP. We also present a less time-consuming version of our MA which shows significant advantages in time consumption.
DOI:10.1109/MC.2013.6608210