On computational robustness of accurate continuous-discrete unscented Kalman filtering for target tracking models

This paper presents a variable-stepsize unscented Kalman filter for treating continuous-time stochastic models in radar tracking, numerically. Our method is grounded in the Gauss-type nested implicit Runge-Kutta formula of order 6 applied for solving moment differential equations (MDEs). The built-i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2016 European Control Conference (ECC) s. 1129 - 1134
Hlavní autoři: Kulikova, Maria V., Kulikov, Gennady Yu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2016
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a variable-stepsize unscented Kalman filter for treating continuous-time stochastic models in radar tracking, numerically. Our method is grounded in the Gauss-type nested implicit Runge-Kutta formula of order 6 applied for solving moment differential equations (MDEs). The built-in global error control ensures that the MDEs are integrated with negligible errors. The latter raises the accuracy of state estimation and makes our state estimator competitive to the accurate continuous-discrete extended Kalman filter (ACD-EKF) and the mixed-type accurate continuous-discrete extended-unscented Kalman filter (ACD-EUKF) developed earlier for target tracking models. The effectiveness of the new filter and its comparison to the ACD-EKF and ACD-EUKF are studied on a 7-dimensional radar tracking problem with both short and long waiting times. Our research suggests that the unscented Kalman filtering is more robust to the error accumulation and better suits for treating target tracking models with long sampling periods whereas the extended Kalman filtering is more accurate when the waiting time is short.
AbstractList This paper presents a variable-stepsize unscented Kalman filter for treating continuous-time stochastic models in radar tracking, numerically. Our method is grounded in the Gauss-type nested implicit Runge-Kutta formula of order 6 applied for solving moment differential equations (MDEs). The built-in global error control ensures that the MDEs are integrated with negligible errors. The latter raises the accuracy of state estimation and makes our state estimator competitive to the accurate continuous-discrete extended Kalman filter (ACD-EKF) and the mixed-type accurate continuous-discrete extended-unscented Kalman filter (ACD-EUKF) developed earlier for target tracking models. The effectiveness of the new filter and its comparison to the ACD-EKF and ACD-EUKF are studied on a 7-dimensional radar tracking problem with both short and long waiting times. Our research suggests that the unscented Kalman filtering is more robust to the error accumulation and better suits for treating target tracking models with long sampling periods whereas the extended Kalman filtering is more accurate when the waiting time is short.
Author Kulikov, Gennady Yu
Kulikova, Maria V.
Author_xml – sequence: 1
  givenname: Maria V.
  surname: Kulikova
  fullname: Kulikova, Maria V.
  email: maria.kulikova@ist.utl.pt
  organization: Center for Comput. & Stochastic Math., Univ. de Lisboa, Lisbon, Portugal
– sequence: 2
  givenname: Gennady Yu
  surname: Kulikov
  fullname: Kulikov, Gennady Yu
  email: gkulikov@math.ist.utl.pt
  organization: Center for Comput. & Stochastic Math., Univ. de Lisboa, Lisbon, Portugal
BookMark eNotkL1OwzAYRY0EAy3sSCx-gQT_xEk8oqj8iEpdOrBVX-zPlUViF9sZeHuK6HSko6M73BW5DjEgIQ-c1Zwz_bQZhlow3tZdz1nT8Cuy4oppJpTmn7fkexeoifNpKVB8DDDRFMcll4A50-goGLMkKHiOQvFhiUuurM8m4dktIRsMBS39gGmGQJ2fCiYfjtTFRAukIxZaEpivPzdHi1O-IzcOpoz3F67J_mWzH96q7e71fXjeVl6zUrXAuGlHLrVBrZWwvewk9KNQHVOqYboBENIxCwzZ2LiuUVY56bQVCo0AuSaP_7MeEQ-n5GdIP4fLCfIXdSVY7Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ECC.2016.7810441
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 150902591X
9781509025916
EndPage 1134
ExternalDocumentID 7810441
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-6a01c6b139ce9952d8373a8b2570554094aa23f0da0e0b4f745d5f3f9d25ec2a3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:24 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-6a01c6b139ce9952d8373a8b2570554094aa23f0da0e0b4f745d5f3f9d25ec2a3
PageCount 6
ParticipantIDs ieee_primary_7810441
PublicationCentury 2000
PublicationDate 2016-June
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 European Control Conference (ECC)
PublicationTitleAbbrev ECC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6342771
Snippet This paper presents a variable-stepsize unscented Kalman filter for treating continuous-time stochastic models in radar tracking, numerically. Our method is...
SourceID ieee
SourceType Publisher
StartPage 1129
SubjectTerms Covariance matrices
Differential equations
Kalman filters
Mathematical model
State estimation
Stochastic processes
Target tracking
Title On computational robustness of accurate continuous-discrete unscented Kalman filtering for target tracking models
URI https://ieeexplore.ieee.org/document/7810441
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5ODRtGn2I5tzaRGE2kMPvZVkMoEF3dXtrr_fZHetCF68LWFJIIFk3sx78wh5ULFGowAYNw5YDFowncqIKW3RxWitTTuzCblaZdutWg_I40ELg4gt-Qwn4bOt5dsSmpAqm8rMg4egUj-SUnZare_KI1fTxXweqFrppP_tl19K-1wsT_-30BkZ_-ju6PrwopyTARYj8vFSUGi9F_q8Ha1K0-zrcEfR0lEN0IR-DzSwzvOi8VCeBa1t5cNh2hRttya09Fm_vumCujyUx_3s1EertOOB07rSEFLmtPXF2Y_JZrnYzJ9Yb5TAcsVrlmo-g9T4WA5QqURYDzojnZlgUOejBQ_gtBaR41Zz5CZ2Mk5s4iKnrEgQhI4uyLAoC7wkdGYxw8QIP1kWZxxM6gQYD6AjK6JYyisyCru1e-9aYez6jbr-e_iGnIQD6ZhVt2RYVw3ekWP4rPN9dd-e3xfKr6J_
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lCnpSacVvc_Bo2jSb_ci5tFRaaw899FbyMYEF3dXtrr_fZHetCF68LWFJIIFk3sx78xB6EFyCEloTqqwmXEtGZBQHREgDloMxJmrMJuLlMtlsxKqDHvdaGACoyWcw8J91Ld_kuvKpsmGcOPDgVeoHIeds1Ki1vmuPVAwn47Ena0WD9sdfjin1gzE9-d9Sp6j_o7zDq_2bcoY6kPXQx0uGde2-0GbucJGralf6WwrnFkutK9_xAXveeZpVDswTr7YtXECMq6zu1wQGz-Xrm8ywTX2B3M2OXbyKGyY4LgupfdIc1844uz5aTyfr8Yy0VgkkFbQkkaQjHSkXzWkQImTGwc5AJspb1Ll4wUE4KVlgqZEUqOI25qEJbWCFYSFoJoNz1M3yDC4QHhlIIFTMTZbwhGoVWaaVg9CBYQGP40vU87u1fW-aYWzbjbr6e_geHc3Wz4vt4mk5v0bH_nAantUN6pZFBbfoUH-W6a64q8_yC2iUpcY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+European+Control+Conference+%28ECC%29&rft.atitle=On+computational+robustness+of+accurate+continuous-discrete+unscented+Kalman+filtering+for+target+tracking+models&rft.au=Kulikova%2C+Maria+V.&rft.au=Kulikov%2C+Gennady+Yu&rft.date=2016-06-01&rft.pub=IEEE&rft.spage=1129&rft.epage=1134&rft_id=info:doi/10.1109%2FECC.2016.7810441&rft.externalDocID=7810441