On computational robustness of accurate continuous-discrete unscented Kalman filtering for target tracking models
This paper presents a variable-stepsize unscented Kalman filter for treating continuous-time stochastic models in radar tracking, numerically. Our method is grounded in the Gauss-type nested implicit Runge-Kutta formula of order 6 applied for solving moment differential equations (MDEs). The built-i...
Uloženo v:
| Vydáno v: | 2016 European Control Conference (ECC) s. 1129 - 1134 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2016
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents a variable-stepsize unscented Kalman filter for treating continuous-time stochastic models in radar tracking, numerically. Our method is grounded in the Gauss-type nested implicit Runge-Kutta formula of order 6 applied for solving moment differential equations (MDEs). The built-in global error control ensures that the MDEs are integrated with negligible errors. The latter raises the accuracy of state estimation and makes our state estimator competitive to the accurate continuous-discrete extended Kalman filter (ACD-EKF) and the mixed-type accurate continuous-discrete extended-unscented Kalman filter (ACD-EUKF) developed earlier for target tracking models. The effectiveness of the new filter and its comparison to the ACD-EKF and ACD-EUKF are studied on a 7-dimensional radar tracking problem with both short and long waiting times. Our research suggests that the unscented Kalman filtering is more robust to the error accumulation and better suits for treating target tracking models with long sampling periods whereas the extended Kalman filtering is more accurate when the waiting time is short. |
|---|---|
| AbstractList | This paper presents a variable-stepsize unscented Kalman filter for treating continuous-time stochastic models in radar tracking, numerically. Our method is grounded in the Gauss-type nested implicit Runge-Kutta formula of order 6 applied for solving moment differential equations (MDEs). The built-in global error control ensures that the MDEs are integrated with negligible errors. The latter raises the accuracy of state estimation and makes our state estimator competitive to the accurate continuous-discrete extended Kalman filter (ACD-EKF) and the mixed-type accurate continuous-discrete extended-unscented Kalman filter (ACD-EUKF) developed earlier for target tracking models. The effectiveness of the new filter and its comparison to the ACD-EKF and ACD-EUKF are studied on a 7-dimensional radar tracking problem with both short and long waiting times. Our research suggests that the unscented Kalman filtering is more robust to the error accumulation and better suits for treating target tracking models with long sampling periods whereas the extended Kalman filtering is more accurate when the waiting time is short. |
| Author | Kulikov, Gennady Yu Kulikova, Maria V. |
| Author_xml | – sequence: 1 givenname: Maria V. surname: Kulikova fullname: Kulikova, Maria V. email: maria.kulikova@ist.utl.pt organization: Center for Comput. & Stochastic Math., Univ. de Lisboa, Lisbon, Portugal – sequence: 2 givenname: Gennady Yu surname: Kulikov fullname: Kulikov, Gennady Yu email: gkulikov@math.ist.utl.pt organization: Center for Comput. & Stochastic Math., Univ. de Lisboa, Lisbon, Portugal |
| BookMark | eNotkL1OwzAYRY0EAy3sSCx-gQT_xEk8oqj8iEpdOrBVX-zPlUViF9sZeHuK6HSko6M73BW5DjEgIQ-c1Zwz_bQZhlow3tZdz1nT8Cuy4oppJpTmn7fkexeoifNpKVB8DDDRFMcll4A50-goGLMkKHiOQvFhiUuurM8m4dktIRsMBS39gGmGQJ2fCiYfjtTFRAukIxZaEpivPzdHi1O-IzcOpoz3F67J_mWzH96q7e71fXjeVl6zUrXAuGlHLrVBrZWwvewk9KNQHVOqYboBENIxCwzZ2LiuUVY56bQVCo0AuSaP_7MeEQ-n5GdIP4fLCfIXdSVY7Q |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ECC.2016.7810441 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 150902591X 9781509025916 |
| EndPage | 1134 |
| ExternalDocumentID | 7810441 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-6a01c6b139ce9952d8373a8b2570554094aa23f0da0e0b4f745d5f3f9d25ec2a3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:24 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-6a01c6b139ce9952d8373a8b2570554094aa23f0da0e0b4f745d5f3f9d25ec2a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_7810441 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-June |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2016 European Control Conference (ECC) |
| PublicationTitleAbbrev | ECC |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6342771 |
| Snippet | This paper presents a variable-stepsize unscented Kalman filter for treating continuous-time stochastic models in radar tracking, numerically. Our method is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1129 |
| SubjectTerms | Covariance matrices Differential equations Kalman filters Mathematical model State estimation Stochastic processes Target tracking |
| Title | On computational robustness of accurate continuous-discrete unscented Kalman filtering for target tracking models |
| URI | https://ieeexplore.ieee.org/document/7810441 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5ODRtGn2I5tzaRGE2kMPvZVkMoEF3dXtrr_fZHetCF68LWFJIIFk3sx78wh5ULFGowAYNw5YDFowncqIKW3RxWitTTuzCblaZdutWg_I40ELg4gt-Qwn4bOt5dsSmpAqm8rMg4egUj-SUnZare_KI1fTxXweqFrppP_tl19K-1wsT_-30BkZ_-ju6PrwopyTARYj8vFSUGi9F_q8Ha1K0-zrcEfR0lEN0IR-DzSwzvOi8VCeBa1t5cNh2hRttya09Fm_vumCujyUx_3s1EertOOB07rSEFLmtPXF2Y_JZrnYzJ9Yb5TAcsVrlmo-g9T4WA5QqURYDzojnZlgUOejBQ_gtBaR41Zz5CZ2Mk5s4iKnrEgQhI4uyLAoC7wkdGYxw8QIP1kWZxxM6gQYD6AjK6JYyisyCru1e-9aYez6jbr-e_iGnIQD6ZhVt2RYVw3ekWP4rPN9dd-e3xfKr6J_ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lCnpSacVvc_Bo2jSb_ci5tFRaaw899FbyMYEF3dXtrr_fZHetCF68LWFJIIFk3sx78xB6EFyCEloTqqwmXEtGZBQHREgDloMxJmrMJuLlMtlsxKqDHvdaGACoyWcw8J91Ld_kuvKpsmGcOPDgVeoHIeds1Ki1vmuPVAwn47Ena0WD9sdfjin1gzE9-d9Sp6j_o7zDq_2bcoY6kPXQx0uGde2-0GbucJGralf6WwrnFkutK9_xAXveeZpVDswTr7YtXECMq6zu1wQGz-Xrm8ywTX2B3M2OXbyKGyY4LgupfdIc1844uz5aTyfr8Yy0VgkkFbQkkaQjHSkXzWkQImTGwc5AJspb1Ll4wUE4KVlgqZEUqOI25qEJbWCFYSFoJoNz1M3yDC4QHhlIIFTMTZbwhGoVWaaVg9CBYQGP40vU87u1fW-aYWzbjbr6e_geHc3Wz4vt4mk5v0bH_nAantUN6pZFBbfoUH-W6a64q8_yC2iUpcY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+European+Control+Conference+%28ECC%29&rft.atitle=On+computational+robustness+of+accurate+continuous-discrete+unscented+Kalman+filtering+for+target+tracking+models&rft.au=Kulikova%2C+Maria+V.&rft.au=Kulikov%2C+Gennady+Yu&rft.date=2016-06-01&rft.pub=IEEE&rft.spage=1129&rft.epage=1134&rft_id=info:doi/10.1109%2FECC.2016.7810441&rft.externalDocID=7810441 |