Medical Image Denoising Using Convolutional Denoising Autoencoders

Image denoising is an important pre-processing step in medical image analysis. Different algorithms have been proposed in past three decades with varying denoising performances. More recently, having outperformed all conventional methods, deep learning based models have shown a great promise. These...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE ... International Conference on Data Mining workshops s. 241 - 246
Hlavní autor: Gondara, Lovedeep
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2016
Témata:
ISSN:2375-9259
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Image denoising is an important pre-processing step in medical image analysis. Different algorithms have been proposed in past three decades with varying denoising performances. More recently, having outperformed all conventional methods, deep learning based models have shown a great promise. These methods are however limited for requirement of large training sample size and high computational costs. In this paper we show that using small sample size, denoising autoencoders constructed using convolutional layers can be used for efficient denoising of medical images. Heterogeneous images can be combined to boost sample size for increased denoising performance. Simplest of networks can reconstruct images with corruption levels so high that noise and signal are not differentiable to human eye.
ISSN:2375-9259
DOI:10.1109/ICDMW.2016.0041