Iterative Hard Thresholding and L0 Regularisation

Sparse signal approximations are approximations that use only a small number of elementary waveforms to describe a signal. In this paper we proof the convergence of an iterative hard thresholding algorithm and show, that the fixed points of that algorithm are local minima of the sparse approximation...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07 Ročník 3; s. III-877 - III-880
Hlavní autori: Blumensath, T., Yaghoobi, M., Davies, M.E.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2007
Predmet:
ISBN:9781424407279, 1424407273
ISSN:1520-6149
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Sparse signal approximations are approximations that use only a small number of elementary waveforms to describe a signal. In this paper we proof the convergence of an iterative hard thresholding algorithm and show, that the fixed points of that algorithm are local minima of the sparse approximation cost function, which measures both, the reconstruction error and the number of elements in the representation. Simulation results suggest that the algorithm is comparable in performance to a commonly used alternative method.
ISBN:9781424407279
1424407273
ISSN:1520-6149
DOI:10.1109/ICASSP.2007.366820