Spatial clustering algorithm with obstacles constraints by quantum particle swarm optimization and K-Medoids

The classical K-Medoids algorithm is easily trapped into local extremum and is sensitive to initialization. After analyzed the existing algorithms of spatial clustering with obstacles constraints, the paper proposed a new spatial clustering algorithm with obstacles constraints combined QPSO with K-M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 Second International Conference on Computational Intelligence and Natural Computing Jg. 2; S. 105 - 108
Hauptverfasser: Yang Teng-Fei, Zhang Xue-Ping
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2010
Schlagworte:
ISBN:9781424477050, 1424477050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical K-Medoids algorithm is easily trapped into local extremum and is sensitive to initialization. After analyzed the existing algorithms of spatial clustering with obstacles constraints, the paper proposed a new spatial clustering algorithm with obstacles constraints combined QPSO with K-Medoids, which named QKSCO. This algorithm introduced QPSO's rapid global convergence to separating the global clusters firstly, then it finds the optimal exact solutions of clusters by K-Medoids; and it called the two algorithms to improving the efficiency of the implementation of the new algorithm coordinating. The experimental results indicated that the algorithm has better time complexity and clustering efficiency.
ISBN:9781424477050
1424477050
DOI:10.1109/CINC.2010.5643776