Spatial clustering algorithm with obstacles constraints by quantum particle swarm optimization and K-Medoids

The classical K-Medoids algorithm is easily trapped into local extremum and is sensitive to initialization. After analyzed the existing algorithms of spatial clustering with obstacles constraints, the paper proposed a new spatial clustering algorithm with obstacles constraints combined QPSO with K-M...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 Second International Conference on Computational Intelligence and Natural Computing Ročník 2; s. 105 - 108
Hlavní autoři: Yang Teng-Fei, Zhang Xue-Ping
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2010
Témata:
ISBN:9781424477050, 1424477050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The classical K-Medoids algorithm is easily trapped into local extremum and is sensitive to initialization. After analyzed the existing algorithms of spatial clustering with obstacles constraints, the paper proposed a new spatial clustering algorithm with obstacles constraints combined QPSO with K-Medoids, which named QKSCO. This algorithm introduced QPSO's rapid global convergence to separating the global clusters firstly, then it finds the optimal exact solutions of clusters by K-Medoids; and it called the two algorithms to improving the efficiency of the implementation of the new algorithm coordinating. The experimental results indicated that the algorithm has better time complexity and clustering efficiency.
AbstractList The classical K-Medoids algorithm is easily trapped into local extremum and is sensitive to initialization. After analyzed the existing algorithms of spatial clustering with obstacles constraints, the paper proposed a new spatial clustering algorithm with obstacles constraints combined QPSO with K-Medoids, which named QKSCO. This algorithm introduced QPSO's rapid global convergence to separating the global clusters firstly, then it finds the optimal exact solutions of clusters by K-Medoids; and it called the two algorithms to improving the efficiency of the implementation of the new algorithm coordinating. The experimental results indicated that the algorithm has better time complexity and clustering efficiency.
Author Yang Teng-Fei
Zhang Xue-Ping
Author_xml – sequence: 1
  surname: Yang Teng-Fei
  fullname: Yang Teng-Fei
  organization: Sch. of Inf. Sci. & Eng., Henan Univ. of Technol., Zhengzhou, China
– sequence: 2
  surname: Zhang Xue-Ping
  fullname: Zhang Xue-Ping
  organization: Sch. of Inf. Sci. & Eng., Henan Univ. of Technol., Zhengzhou, China
BookMark eNpVUM1OwzAYCwIkYOwBEJe8QEf-2ixHVPEzMeDA7lPSfhlBbVKSVNN4eiqxCz7Ysmz54Ct05oMHhG4oWVBK1F29eqsXjEy2rASXsjpBcyWXVDAhpCSVPP3nS3KB5il9kQklk4JUl6j7GHR2usNNN6YM0fkd1t0uRJc_e7yfGAeTsm46SLgJPuWonc8JmwP-HrXPY48HHbObCjjtdexxGLLr3c80GzzWvsUvxSu0wbXpGp1b3SWYH3WGNo8Pm_q5WL8_rer7deEUyUUJjGtleVtaC0RZbSywZSMqRlsLZgpL4EYo0lhDgYuWLpW0pmGqYpJpyWfo9m_WAcB2iK7X8bA9XsR_ATnYXxo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CINC.2010.5643776
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781424477067
9781424477043
1424477069
1424477042
EndPage 108
ExternalDocumentID 5643776
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-5e23a9f3d5ffe09fabfe28c4621dfeb23a5e3b490cfb1e34d1897fbc296272a73
IEDL.DBID RIE
ISBN 9781424477050
1424477050
IngestDate Wed Aug 27 02:52:40 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-5e23a9f3d5ffe09fabfe28c4621dfeb23a5e3b490cfb1e34d1897fbc296272a73
PageCount 4
ParticipantIDs ieee_primary_5643776
PublicationCentury 2000
PublicationDate 2010-Sept.
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-Sept.
PublicationDecade 2010
PublicationTitle 2010 Second International Conference on Computational Intelligence and Natural Computing
PublicationTitleAbbrev CINC
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000527406
Score 1.4535053
Snippet The classical K-Medoids algorithm is easily trapped into local extremum and is sensitive to initialization. After analyzed the existing algorithms of spatial...
SourceID ieee
SourceType Publisher
StartPage 105
SubjectTerms Algorithm design and analysis
Clustering algorithms
Convergence
K-Medoids algorithm
obstacle constraints
Optimization
Particle swarm optimization
Partitioning algorithms
QPSO algorithm
spatial clustering
Sun
Title Spatial clustering algorithm with obstacles constraints by quantum particle swarm optimization and K-Medoids
URI https://ieeexplore.ieee.org/document/5643776
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA_b8OBJZRPf5ODRuLRJm-Y8HII6dthht5GnDrZ29qH435u0XUXw4qWkLYTwJeR7_r4fALcqNFRzwxBVmCLqVBiSjDEUKKpjFkgmmiZJz2w2S5ZLPu-Buw4LY4ypi8_MvR_WuXydqcqHysaRzzKxuA_67tlgtbp4Co6cf4XjPXaLMRx1LZ32721WM8B8PHE-c1PY1U76i12lVi7To_8t6xiMflB6cN7pnxPQM-kQbDzHsDtTUG0q3wPB_YFi85rl6_JtC33UFWbSWYS-GA4qbxx6joiygPILvldOzNUW7trjBItPkW9h5m6VbQvXhCLV8Am9GHcV6mIEFtOHxeQRtYwKaM1xiSITEsEt0ZG1BnMrpDVhomgcBto6F5uIyBBJOVZWBoZQHSScWalCz9ATCkZOwSDNUnMGoCAiiCxzxqBJqJtWKkKk0Di2PhUa23Mw9IJa7ZqeGatWRhd_f74Eh01W3tduXYFBmVfmGhyoj3Jd5Df1Rn8DZ1uoyw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZKQYIJUIu48cBIqBM7cTJXVEU91KFDt8onVGqSkgPEv8dOQhASC1sOyYpeLL_je9_7ALgXniIyUtQhAhGHGBfmcEqp4woiA-pyyuohSVM6n4erVbTogIeWC6OUqprP1KO9rLB8mYrSlsoGvkWZaLAH9q1yVsPWaisqyDcZFgq-2VuUIr8d6vR93-CaLooGQ5M1161dzbK_9FUq9zI6_t-HnYD-D08PLloPdAo6KumBrVUZNrsKim1ppyCYN5BtX9JsU7zG0NZdYcpNTGjb4aCw4aFViShyyD_hW2kMXcZw12womH-wLIapOVfihrAJWSLhxJkpcxjKvA-Wo6flcOw0mgrOJkKF4ysPs0hj6WutUKQZ18oLBQk8V2qTZGPmK8xJhITmrsJEumFENRee1ejxGMVnoJukiToHkGHm-pqacFCFxCzLBcacSRRoC4YG-gL0rKHWu3pqxrqx0eXfj-_A4Xg5m66nz_PJFTiqMXrbyXUNukVWqhtwIN6LTZ7dVj_9C2CQrBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Second+International+Conference+on+Computational+Intelligence+and+Natural+Computing&rft.atitle=Spatial+clustering+algorithm+with+obstacles+constraints+by+quantum+particle+swarm+optimization+and+K-Medoids&rft.au=Yang+Teng-Fei&rft.au=Zhang+Xue-Ping&rft.date=2010-09-01&rft.pub=IEEE&rft.isbn=9781424477050&rft.volume=2&rft.spage=105&rft.epage=108&rft_id=info:doi/10.1109%2FCINC.2010.5643776&rft.externalDocID=5643776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424477050/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424477050/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424477050/sc.gif&client=summon&freeimage=true