Spatial clustering algorithm with obstacles constraints by quantum particle swarm optimization and K-Medoids
The classical K-Medoids algorithm is easily trapped into local extremum and is sensitive to initialization. After analyzed the existing algorithms of spatial clustering with obstacles constraints, the paper proposed a new spatial clustering algorithm with obstacles constraints combined QPSO with K-M...
Gespeichert in:
| Veröffentlicht in: | 2010 Second International Conference on Computational Intelligence and Natural Computing Jg. 2; S. 105 - 108 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.09.2010
|
| Schlagworte: | |
| ISBN: | 9781424477050, 1424477050 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The classical K-Medoids algorithm is easily trapped into local extremum and is sensitive to initialization. After analyzed the existing algorithms of spatial clustering with obstacles constraints, the paper proposed a new spatial clustering algorithm with obstacles constraints combined QPSO with K-Medoids, which named QKSCO. This algorithm introduced QPSO's rapid global convergence to separating the global clusters firstly, then it finds the optimal exact solutions of clusters by K-Medoids; and it called the two algorithms to improving the efficiency of the implementation of the new algorithm coordinating. The experimental results indicated that the algorithm has better time complexity and clustering efficiency. |
|---|---|
| AbstractList | The classical K-Medoids algorithm is easily trapped into local extremum and is sensitive to initialization. After analyzed the existing algorithms of spatial clustering with obstacles constraints, the paper proposed a new spatial clustering algorithm with obstacles constraints combined QPSO with K-Medoids, which named QKSCO. This algorithm introduced QPSO's rapid global convergence to separating the global clusters firstly, then it finds the optimal exact solutions of clusters by K-Medoids; and it called the two algorithms to improving the efficiency of the implementation of the new algorithm coordinating. The experimental results indicated that the algorithm has better time complexity and clustering efficiency. |
| Author | Yang Teng-Fei Zhang Xue-Ping |
| Author_xml | – sequence: 1 surname: Yang Teng-Fei fullname: Yang Teng-Fei organization: Sch. of Inf. Sci. & Eng., Henan Univ. of Technol., Zhengzhou, China – sequence: 2 surname: Zhang Xue-Ping fullname: Zhang Xue-Ping organization: Sch. of Inf. Sci. & Eng., Henan Univ. of Technol., Zhengzhou, China |
| BookMark | eNpVUM1OwzAYCwIkYOwBEJe8QEf-2ixHVPEzMeDA7lPSfhlBbVKSVNN4eiqxCz7Ysmz54Ct05oMHhG4oWVBK1F29eqsXjEy2rASXsjpBcyWXVDAhpCSVPP3nS3KB5il9kQklk4JUl6j7GHR2usNNN6YM0fkd1t0uRJc_e7yfGAeTsm46SLgJPuWonc8JmwP-HrXPY48HHbObCjjtdexxGLLr3c80GzzWvsUvxSu0wbXpGp1b3SWYH3WGNo8Pm_q5WL8_rer7deEUyUUJjGtleVtaC0RZbSywZSMqRlsLZgpL4EYo0lhDgYuWLpW0pmGqYpJpyWfo9m_WAcB2iK7X8bA9XsR_ATnYXxo |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CINC.2010.5643776 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781424477067 9781424477043 1424477069 1424477042 |
| EndPage | 108 |
| ExternalDocumentID | 5643776 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-5e23a9f3d5ffe09fabfe28c4621dfeb23a5e3b490cfb1e34d1897fbc296272a73 |
| IEDL.DBID | RIE |
| ISBN | 9781424477050 1424477050 |
| IngestDate | Wed Aug 27 02:52:40 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-5e23a9f3d5ffe09fabfe28c4621dfeb23a5e3b490cfb1e34d1897fbc296272a73 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_5643776 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Sept. |
| PublicationDateYYYYMMDD | 2010-09-01 |
| PublicationDate_xml | – month: 09 year: 2010 text: 2010-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 Second International Conference on Computational Intelligence and Natural Computing |
| PublicationTitleAbbrev | CINC |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000527406 |
| Score | 1.4535669 |
| Snippet | The classical K-Medoids algorithm is easily trapped into local extremum and is sensitive to initialization. After analyzed the existing algorithms of spatial... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 105 |
| SubjectTerms | Algorithm design and analysis Clustering algorithms Convergence K-Medoids algorithm obstacle constraints Optimization Particle swarm optimization Partitioning algorithms QPSO algorithm spatial clustering Sun |
| Title | Spatial clustering algorithm with obstacles constraints by quantum particle swarm optimization and K-Medoids |
| URI | https://ieeexplore.ieee.org/document/5643776 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8OBJZRO_ycGjcWnTpM15OAR17DBkt5GmiQ7WdfZD8b_3pa0VwYuX0g8I5eXx8r5-74fQdehrX1iPERnElICGCBJpQYlmXiKE0ZzV-Irnx3A2i5ZLOe-hmw4LY4ypm8_Mrbuta_lJpiuXKhtzV2UKRR_14dpgtbp8CuUQX1Hxjd0KQ8q7kU7fz21V06NyPIGYuWnsahf9xa5SHy7Tg__91iEa_aD08Lw7f45Qz2yHaOM4hkGnsN5UbgYCfMFq85Ll6_I1xS7rirMYPELXDIe1cw4dR0RZ4PgTv1Ug5irFu1adcPGh8hRnYFXSFq6J1TbBD-TJgClMihFaTO8Wk3vSMiqQtaQl4cZnSlqWcGsNlVbF1viRDoTvJRZCbKa4YXEgqbaxZ1iQeJEMbax9x9Djq5Ado8E225oThAPwNAz4Ch7sdKA1mG8IjViklLY8gYVP0dAJarVrZmasWhmd_f36HO03VXnXu3WBBmVemUu0p9_LdZFf1Rv9BbcdqQU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zCvqksol38-CjdWnTpM3zcEx2YQ9D9jbSXHSwtbMXxX9v0nYVwRff2gZCOTmcnNt3PgDuA094VLvYYX6EHKMh1AkFRY7ArqRUCYJLfMXLOJhOw8WCzVrgocHCKKXK5jP1aB_LWr5MRGFTZT1iq0wB3QP7ljmLVGitJqOCiImwEN2ht4IAkWao0-69rmu6iPX6JmquWrvqbX_xq5TXy-D4fz92Aro_OD04a26gU9BScQesLcuw0Soo1oWdgmBWIF-_Jukqf9tAm3eFSWR8QtsOB4V1Dy1LRJ7B6Au-F0bQxQZua4WC2SdPNzAxdmVTAzYhjyUcORNljKHMumA-eJr3h07NqeCsGModojzMmcaSaK0Q0zzSyguFTz1XahNkY04UjnyGhI5chX3phizQkfAsR4_HA3wG2nESq3MAfeNrKOMtuOasfSGMATfBEQ45F5pIs_EF6FhBLbfV1IxlLaPLvz_fgcPhfDJejp-noytwVNXobSfXNWjnaaFuwIH4yFdZelse-je2RKxQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Second+International+Conference+on+Computational+Intelligence+and+Natural+Computing&rft.atitle=Spatial+clustering+algorithm+with+obstacles+constraints+by+quantum+particle+swarm+optimization+and+K-Medoids&rft.au=Yang+Teng-Fei&rft.au=Zhang+Xue-Ping&rft.date=2010-09-01&rft.pub=IEEE&rft.isbn=9781424477050&rft.volume=2&rft.spage=105&rft.epage=108&rft_id=info:doi/10.1109%2FCINC.2010.5643776&rft.externalDocID=5643776 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424477050/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424477050/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424477050/sc.gif&client=summon&freeimage=true |

