A Maximal Fuzzy Entropy Based Gaussian Clustering Algorithm for Tracking Dim Moving Point Targets in Image Sequences

After targetspsila original states were estimated by multi-frame detection method, the tracking windows in which each target may be occur were used to lower the computational load. Then all the observational data could be positioned in a observational matrix, and we used a maximal-entropy Gaussian f...

Full description

Saved in:
Bibliographic Details
Published in:2008 International Conference on Computer Science and Software Engineering : 12-14 December 2008 Vol. 6; pp. 54 - 57
Main Authors: Xingke Lian, Hamdulla, A.
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2008
Subjects:
ISBN:0769533361, 9780769533360
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract After targetspsila original states were estimated by multi-frame detection method, the tracking windows in which each target may be occur were used to lower the computational load. Then all the observational data could be positioned in a observational matrix, and we used a maximal-entropy Gaussian fuzzy clustering method to get the membership for each measurements to replace associated probability in traditional PDA filter, then the targetspsila following states were estimated by Kalman filter. This paper gives a new weight distribution scheme for deciding the uncertainty of measurements, and defines maximum effective distance based on difference factor to eliminate non-effective observational data. This method avoids tracking false targets or losing targets when targets are crowded in traditional target-tracking methods, and reduces greatly the computation load and has guaranteed the tracking accuracy.
AbstractList After targetspsila original states were estimated by multi-frame detection method, the tracking windows in which each target may be occur were used to lower the computational load. Then all the observational data could be positioned in a observational matrix, and we used a maximal-entropy Gaussian fuzzy clustering method to get the membership for each measurements to replace associated probability in traditional PDA filter, then the targetspsila following states were estimated by Kalman filter. This paper gives a new weight distribution scheme for deciding the uncertainty of measurements, and defines maximum effective distance based on difference factor to eliminate non-effective observational data. This method avoids tracking false targets or losing targets when targets are crowded in traditional target-tracking methods, and reduces greatly the computation load and has guaranteed the tracking accuracy.
Author Hamdulla, A.
Xingke Lian
Author_xml – sequence: 1
  surname: Xingke Lian
  fullname: Xingke Lian
  organization: Coll. of Inf. Sci. & Eng., Xinjiang Univ., Urumqi
– sequence: 2
  givenname: A.
  surname: Hamdulla
  fullname: Hamdulla, A.
  organization: Coll. of Inf. Sci. & Eng., Xinjiang Univ., Urumqi
BookMark eNotkMtOwzAURC0BElC6ZMXm_kCLH3EeyxLaUqkVSM2-cpybYEicYjuI9utpBasZncVIZ27Jpe0tEnLP6JQxmj3m2-18yilNp4KLC3JLkziTQoiYXZOx9x-UUpbFCWPyhoQZbNSP6VQLi-F4PMDcBtfvD_CkPFawVIP3RlnI28EHdMY2MGub3pnw3kHdOyic0p9n_Gw62PTf5_rWGxugUK7B4MFYWHWqQdji14BWo78jV7VqPY7_c0SKxbzIXybr1-Uqn60nJqNhIrVUkeaVTisZ1xJLxZOsTrUQkZQ0rmouSqZlKZOIVaJOGS8jwSnTSVLFlKIYkYe_WYOIu707WbrDLkq4YKc_fgFPmlqP
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSSE.2008.323
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 57
ExternalDocumentID 4723195
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i90t-5c5a4c2dc8d56f5eba279f8c3345506df23b1c5b5741d3f812b43201c77d600e3
IEDL.DBID RIE
ISBN 0769533361
9780769533360
IngestDate Wed Aug 27 02:15:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-5c5a4c2dc8d56f5eba279f8c3345506df23b1c5b5741d3f812b43201c77d600e3
PageCount 4
ParticipantIDs ieee_primary_4723195
PublicationCentury 2000
PublicationDate 2008-Dec.
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-Dec.
PublicationDecade 2000
PublicationTitle 2008 International Conference on Computer Science and Software Engineering : 12-14 December 2008
PublicationTitleAbbrev CSSE
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001967115
Score 1.4241207
Snippet After targetspsila original states were estimated by multi-frame detection method, the tracking windows in which each target may be occur were used to lower...
SourceID ieee
SourceType Publisher
StartPage 54
SubjectTerms Clustering algorithms
Clustering methods
difference factor
Entropy
Filters
Image sequences
maximal-entropy gauss fuzzy clustering
measurement matrix
Measurement uncertainty
multi-window fusion
Non-effective measurement
Personal digital assistants
Position measurement
State estimation
Target tracking
Title A Maximal Fuzzy Entropy Based Gaussian Clustering Algorithm for Tracking Dim Moving Point Targets in Image Sequences
URI https://ieeexplore.ieee.org/document/4723195
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6AePCECsbfeQePTmBd2-2ICGoihAQO3EjXdrqEbQQ2I_z1ttsAD168tT00zWva9_X1-95D6J5IzKXNpOU6LrUcxpXFua8s1hGSEw36aSEUfmejkTubeeMKethrYZRSOflMPZpm_pcvE5GZUFnLYRqNeKSKqozRQqt1iKd4lGl0U7zMDWcS006ZYGfXbx9ybLZ6k0m_YFJiU6noV2WV3LEM6v9b0glqHhR6MN77nlNUUfEZqu9KNEB5Yhso7cKQf4cRX8Ag22430DfM9OUGnrT3kvDCs7VRUUJvkZmMCXou6C4-klWYfkag8SxoXyZMNB2ewwiGefgBxkkYpzDNOeRrCGN4i_StBJMdK7uJpoP-tPdqlYUWrNBrpxYRhDvClsKVhAZE-dxmXuAKjI3kmcrAxn5HEJ9o9CFxoCGB72ANHARjUuMlhc9RLU5idYGAOW3p2xxTT2BHKcKJ2Rbu6nYQOEHnEjWMDefLIpXGvDTf1d_D1-g4p2fk7JEbVEtXmbpFR-IrDderu3z_fwChBa7t
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG0QTfSECsbffgePTmBd1-2ICEIEQsIO3EjXdroEBoHNCH-97TbAgxdvbQ9L0x_73r699z2EHonATJhUGI7l2IZFmTQY86VB61wwokC_nQmFe3QwcMZjd1hATzstjJQyJZ_JZ91M_-WLOU90qqxqUYVGXHKADrVzVq7W2mdUXJsqfJN9m2vWJLbreYmdbb-2r7JZbY5GrYxLibVX0S9vlTS0tEv_m9Qpquw1ejDcRZ8zVJDROSptTRogv7NlFDegz77DGZtCO9ls1tDS3PTFGl5U_BLwxpKV1lFCc5romgnqWdCYfsyXYfw5A4VoQUUzrvPp8BrOoJ8mIGA4D6MYvJRFvoIwgu5MvZdgtOVlV5DXbnnNjpFbLRihW4sNwgmzuCm4I4gdEOkzk7qBwzHWomdbBCb265z4ROEPgQMFCnwLK-jAKRUKMUl8gYrRPJKXCKhVE77JsO1ybElJGNHbwhzVDgIrqF-hsl7DySIrpjHJl-_67-EHdNzx-r1Jrzt4v0EnKVkj5ZLcomK8TOQdOuJfcbha3qdn4QfttbI2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+International+Conference+on+Computer+Science+and+Software+Engineering+%3A+12-14+December+2008&rft.atitle=A+Maximal+Fuzzy+Entropy+Based+Gaussian+Clustering+Algorithm+for+Tracking+Dim+Moving+Point+Targets+in+Image+Sequences&rft.au=Xingke+Lian&rft.au=Hamdulla%2C+A.&rft.date=2008-12-01&rft.pub=IEEE&rft.isbn=9780769533360&rft.volume=6&rft.spage=54&rft.epage=57&rft_id=info:doi/10.1109%2FCSSE.2008.323&rft.externalDocID=4723195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769533360/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769533360/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769533360/sc.gif&client=summon&freeimage=true