K-means clustering algorithm based on improved Cuckoo search algorithm and its application
Because the K-Means algorithm is easy to fall into the local optimum and the Cuckoo search (CS) algorithm is affected by the step size, this paper proposes a K-Means clustering algorithm based on improved cuckoo search (ICS-Kmeans). The algorithm is compared with the original K-means, the Kmeans alg...
Uloženo v:
| Vydáno v: | 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA) s. 422 - 426 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.03.2018
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Because the K-Means algorithm is easy to fall into the local optimum and the Cuckoo search (CS) algorithm is affected by the step size, this paper proposes a K-Means clustering algorithm based on improved cuckoo search (ICS-Kmeans). The algorithm is compared with the original K-means, the Kmeans algorithm based on particle swarm optimization (PSO-Kmeans) and the K-Means algorithm based on the cuckoo search (CS-Kmeans). The experimental results show that the proposed algorithm can obtain better clustering effect, faster convergence rate and better accuracy rate through the experimental test on the UCI standard data set. The algorithm is also applied to the clustering of the characteristic parameters of the heart sound MFCC. The results show that a better clustering center can be obtained, the algorithm converges fast. |
|---|---|
| AbstractList | Because the K-Means algorithm is easy to fall into the local optimum and the Cuckoo search (CS) algorithm is affected by the step size, this paper proposes a K-Means clustering algorithm based on improved cuckoo search (ICS-Kmeans). The algorithm is compared with the original K-means, the Kmeans algorithm based on particle swarm optimization (PSO-Kmeans) and the K-Means algorithm based on the cuckoo search (CS-Kmeans). The experimental results show that the proposed algorithm can obtain better clustering effect, faster convergence rate and better accuracy rate through the experimental test on the UCI standard data set. The algorithm is also applied to the clustering of the characteristic parameters of the heart sound MFCC. The results show that a better clustering center can be obtained, the algorithm converges fast. |
| Author | Huang, Xiaoli Ye, Shuce Li, Yuxia Teng, Yinyin |
| Author_xml | – sequence: 1 givenname: Shuce surname: Ye fullname: Ye, Shuce organization: School of electrical engineering and electronic information, Xihua University – sequence: 2 givenname: Xiaoli surname: Huang fullname: Huang, Xiaoli organization: School of electrical engineering and electronic information, Xihua University – sequence: 3 givenname: Yinyin surname: Teng fullname: Teng, Yinyin organization: School of electrical engineering and electronic information, Xihua University – sequence: 4 givenname: Yuxia surname: Li fullname: Li, Yuxia organization: School of electrical engineering and electronic information, Xihua University |
| BookMark | eNpNj71OwzAURo0EAy28ACx-gQTbN3acsYS_ikosHRBLdePYrUViR3aKxNuDRAem7wxHR_oW5DzEYAm54azknDV36_b-YVUKxnWpQdW1YGdkwSVoVdVN9X5JPl6L0WLI1AzHPNvkw57isI_Jz4eRdphtT2OgfpxS_Prl9mg-Y6TZYjKHfyaGnvo5U5ymwRucfQxX5MLhkO31aZdk-_S4bV-Kzdvzul1tCt-wuZC146CAIygEiVJyq3lfaeWAK9lBZwGEccIKBaaBTnEjuqavHQPUAhwsye1f1ltrd1PyI6bv3ekt_ABarU9- |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICBDA.2018.8367720 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 153864794X 1538647923 9781538647929 9781538647943 |
| EndPage | 426 |
| ExternalDocumentID | 8367720 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-57f13631a36a35a551e81d486f3165b3be332cf2e263c93b61c2b9d7f03a823f3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:39:40 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-57f13631a36a35a551e81d486f3165b3be332cf2e263c93b61c2b9d7f03a823f3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8367720 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-March |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-March |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA) |
| PublicationTitleAbbrev | ICBDA |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7172997 |
| Snippet | Because the K-Means algorithm is easy to fall into the local optimum and the Cuckoo search (CS) algorithm is affected by the step size, this paper proposes a... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 422 |
| SubjectTerms | Birds Classification algorithms Clustering algorithms Convergence cuckoo search heart sound characteristics Integrated circuits K-Means Optimization Partitioning algorithms |
| Title | K-means clustering algorithm based on improved Cuckoo search algorithm and its application |
| URI | https://ieeexplore.ieee.org/document/8367720 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxcAEqEW85YGRtHUucewRChUIqerQoWKpbOcMEW2C2oTfj50UKBIL28k-ydbZ1nfnexFyxUOG2rgHyN02g8gqFmjJVBCCQanQmQBx02wiGY_FbCYnLXL9nQuDiHXwGfY8Wfvy08JU_qusL4A7ZdAZ6DtJwptcra88mIHsPw5v7258sJbobRh_dUypAWO0_7-lDkj3J_OOTr4x5ZC0MO-Q56dgiQ5SqFlUvq6Bm6Fq8VI4u_51ST0OpbTIaVb_Dzh6WJm3oqDNJd7iVHlKs3JNt5zWXTId3U-HD8GmJ0KQyUEZxIllwIEp4Api5dQddApnJLgFxmMNGgFCY0MMORgJmjMTapkmdgBKhGDhiLTzIsdjQq1RzPF5V632VQO1kJFFK5RMtEgjPCEdL5b5e1P1Yr6RyOnfw2dkz0u-ic46J-1yVeEF2TUfZbZeXdZH9QmIs5iM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1NT8IwtCFooic1YPy2B48O1nXr2qOiBgISDhyIF9J2r0qEzcDm77fdEDHx4u2lfUmb99q87_cQumEBAaXtB2T2ml5oJPGUINILqAYhwZoAUTVsIh4O-WQiRjV0u6mFAYAy-QxaDixj-UmmC-cqa3PKrDJoDfSdKAwDv6rW-q6E8UW717l_uHPpWry1Rv01M6UUGU8H_zvsEDV_au_waCNVjlAN0gZ66XsLsEIF63nhOhvYHSznr5m17N8W2EmiBGcpnpUeAgt3Cv2eZbh6xluYMk3wLF_hrbB1E42fHsedrreeiuDNhJ97UWwIZZRIyiSNpFV4wKqcIWeGEhYpqoDSQJsAAka1oIoRHSiRxMankgfU0GNUT7MUThA2WhKL54K1yvUNVFyEBgyXIlY8CeEUNRxZph9V34vpmiJnfy9fo73u-HkwHfSG_XO077hQ5WpdoHq-LOAS7erPfLZaXpVs-wKlppvT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+3rd+International+Conference+on+Big+Data+Analysis+%28ICBDA%29&rft.atitle=K-means+clustering+algorithm+based+on+improved+Cuckoo+search+algorithm+and+its+application&rft.au=Ye%2C+Shuce&rft.au=Huang%2C+Xiaoli&rft.au=Teng%2C+Yinyin&rft.au=Li%2C+Yuxia&rft.date=2018-03-01&rft.pub=IEEE&rft.spage=422&rft.epage=426&rft_id=info:doi/10.1109%2FICBDA.2018.8367720&rft.externalDocID=8367720 |