Travel time prediction with LSTM neural network

Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time acquisition is time delayed and the pattern of travel time is usually irregular. In this paper, we explore a deep learning model, the LSTM neural...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Conference on Intelligent Transportation Systems) s. 1053 - 1058
Hlavní autoři: Duan, Yanjie, L.V., Yisheng, Wang, Fei-Yue
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2016
Témata:
ISSN:2153-0017
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time acquisition is time delayed and the pattern of travel time is usually irregular. In this paper, we explore a deep learning model, the LSTM neural network model, for travel time prediction. By employing the travel time data provided by Highways England, we construct 66 series prediction LSTM neural networks for the 66 links in the data set. Through model training and validation, we obtain the optimal structure within the setting range for each link. Then we predict multi-step ahead travel times for each link on the test set. Evaluation results show that the 1-step ahead travel time prediction error is relatively small, the median of mean relative error for the 66 links in the experiments is 7.0% on the test set. Deep learning models considering sequence relation are promising in traffic series data prediction.
ISSN:2153-0017
DOI:10.1109/ITSC.2016.7795686