Travel time prediction with LSTM neural network
Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time acquisition is time delayed and the pattern of travel time is usually irregular. In this paper, we explore a deep learning model, the LSTM neural...
Uložené v:
| Vydané v: | Proceedings (IEEE Conference on Intelligent Transportation Systems) s. 1053 - 1058 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.11.2016
|
| Predmet: | |
| ISSN: | 2153-0017 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time acquisition is time delayed and the pattern of travel time is usually irregular. In this paper, we explore a deep learning model, the LSTM neural network model, for travel time prediction. By employing the travel time data provided by Highways England, we construct 66 series prediction LSTM neural networks for the 66 links in the data set. Through model training and validation, we obtain the optimal structure within the setting range for each link. Then we predict multi-step ahead travel times for each link on the test set. Evaluation results show that the 1-step ahead travel time prediction error is relatively small, the median of mean relative error for the 66 links in the experiments is 7.0% on the test set. Deep learning models considering sequence relation are promising in traffic series data prediction. |
|---|---|
| AbstractList | Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time acquisition is time delayed and the pattern of travel time is usually irregular. In this paper, we explore a deep learning model, the LSTM neural network model, for travel time prediction. By employing the travel time data provided by Highways England, we construct 66 series prediction LSTM neural networks for the 66 links in the data set. Through model training and validation, we obtain the optimal structure within the setting range for each link. Then we predict multi-step ahead travel times for each link on the test set. Evaluation results show that the 1-step ahead travel time prediction error is relatively small, the median of mean relative error for the 66 links in the experiments is 7.0% on the test set. Deep learning models considering sequence relation are promising in traffic series data prediction. |
| Author | Duan, Yanjie L.V., Yisheng Wang, Fei-Yue |
| Author_xml | – sequence: 1 givenname: Yanjie surname: Duan fullname: Duan, Yanjie email: yisheng.lv@ia.ac.cn organization: The State Key Laboratory of Management and Control for Complex Systems Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China – sequence: 2 givenname: Yisheng surname: L.V. fullname: L.V., Yisheng email: yisheng.lv@ia.ac.cn organization: State Key Lab. of Manage. & Control for Complex Syst., Inst. of Autom., Beijing, China – sequence: 3 givenname: Fei-Yue surname: Wang fullname: Wang, Fei-Yue organization: The State Key Laboratory of Management and Control for Complex Systems Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China |
| BookMark | eNotj81Kw0AURkepYK15AHGTF0g6d_7vUoLWQsRFsy_TzAyOpkmZRItvb8AePji7D84dWfRD7wl5AFoCUFxvm11VMgqq1BqlMuqKZKgNSIoUjEF5TZYMJC8oBX1LsnH8pDOcGcXpkqybZH98l0_x6PNT8i62Uxz6_Bynj7zeNW9577-T7WZN5yF93ZObYLvRZxevSPPy3FSvRf2-2VZPdRGRToVkzojQBiVMi20AqblWxinH5lnhUKC2FBCZ8A6kEtzrA4Jqgw6aMcdX5PH_Nnrv96cUjzb97i-F_A9HVkTa |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ITSC.2016.7795686 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781509018895 1509018891 |
| EISSN | 2153-0017 |
| EndPage | 1058 |
| ExternalDocumentID | 7795686 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i90t-52d84fcf648c9cf1573768d6d26d2a4d9497a019924ed15643e7b916cf7f722d3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:53:06 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-52d84fcf648c9cf1573768d6d26d2a4d9497a019924ed15643e7b916cf7f722d3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_7795686 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Nov. |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings (IEEE Conference on Intelligent Transportation Systems) |
| PublicationTitleAbbrev | ITSC |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000328630 |
| Score | 2.1947002 |
| Snippet | Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1053 |
| SubjectTerms | Logic gates Machine learning Predictive models Real-time systems Recurrent neural networks Roads |
| Title | Travel time prediction with LSTM neural network |
| URI | https://ieeexplore.ieee.org/document/7795686 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB5UemgvfWjpmxx6bHSTbHayZ6m0YEUwFG-S7OyCICo--vu7E61toZfCQpaFJMwGMsnM9wB4FEjk87oICxO7UGpBYWYKFxIKmzodJVjZt733cTDIxmM9rMHTgQtjra3AZ7bN06qXTwuz5VJZB5HJbaoOdUTccbUO9RTWhVPJV-MyErrzmo-6jN1S7f15vwxUqvzRO_3fnc-g9U3EC4aHFHMONTu_gJMfGoJN6ORsIDQL2CQ-WK6478J7HXCBNeiP8reAJSuLmT9UgO8W5L3nvPsS7l0QwqkWG_-jSJl0ximZGW1clKJ_JWSkKPajkKSlxkIwiFRaYuWXxGLpv_mMQ4dxTMklNOaLub2CoFRGaWOpjPwltYvLlCKbJClbSkWSimtocuST5U7nYrIP-ubv5Vs45s3d8fLuoLFZbe09HJmPzXS9eqgezif695BJ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba8IwFD44N9j2sovK7svDHldN2jRpnmWirIpgGb5JmwsIouJ0v3851bkN9jIINATaclLoac_5LgBPVBrj8zoNch26gCtqgkTnLjCS2tgpFsnSvu0tlYNBMh6rYQWe91wYa20JPrNNnJa9fLPQGyyVtaREcps4gMOY85Bt2Vr7igoqw4noq3XJqGr1slEb0VuiuTvzl4VKmUE6Z_-79znUv6l4ZLhPMhdQsfNLOP2hIliDVoYWQjOCNvFkucLOC-42wRIrSUdZn6BoZT7zhxLyXYes85K1u8HOByGYKrr2v4om4U47wROttGOx9C-FxAgT-pFzo7iSOUUYKbcGtV8iKwv_1aeddDIMTdSA6nwxt1dACqGF0tYUzF9SubCIDbNRFKOpFOMmv4YaRj5ZbpUuJrugb_5efoTjbtZPJ2lv8HoLJ7jRW5beHVTXq429hyP9sZ6-rx7KB_UJr1STkA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Conference+on+Intelligent+Transportation+Systems%29&rft.atitle=Travel+time+prediction+with+LSTM+neural+network&rft.au=Duan%2C+Yanjie&rft.au=L.V.%2C+Yisheng&rft.au=Wang%2C+Fei-Yue&rft.date=2016-11-01&rft.pub=IEEE&rft.eissn=2153-0017&rft.spage=1053&rft.epage=1058&rft_id=info:doi/10.1109%2FITSC.2016.7795686&rft.externalDocID=7795686 |