Travel time prediction with LSTM neural network

Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time acquisition is time delayed and the pattern of travel time is usually irregular. In this paper, we explore a deep learning model, the LSTM neural...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE Conference on Intelligent Transportation Systems) s. 1053 - 1058
Hlavní autori: Duan, Yanjie, L.V., Yisheng, Wang, Fei-Yue
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.11.2016
Predmet:
ISSN:2153-0017
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time acquisition is time delayed and the pattern of travel time is usually irregular. In this paper, we explore a deep learning model, the LSTM neural network model, for travel time prediction. By employing the travel time data provided by Highways England, we construct 66 series prediction LSTM neural networks for the 66 links in the data set. Through model training and validation, we obtain the optimal structure within the setting range for each link. Then we predict multi-step ahead travel times for each link on the test set. Evaluation results show that the 1-step ahead travel time prediction error is relatively small, the median of mean relative error for the 66 links in the experiments is 7.0% on the test set. Deep learning models considering sequence relation are promising in traffic series data prediction.
AbstractList Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time acquisition is time delayed and the pattern of travel time is usually irregular. In this paper, we explore a deep learning model, the LSTM neural network model, for travel time prediction. By employing the travel time data provided by Highways England, we construct 66 series prediction LSTM neural networks for the 66 links in the data set. Through model training and validation, we obtain the optimal structure within the setting range for each link. Then we predict multi-step ahead travel times for each link on the test set. Evaluation results show that the 1-step ahead travel time prediction error is relatively small, the median of mean relative error for the 66 links in the experiments is 7.0% on the test set. Deep learning models considering sequence relation are promising in traffic series data prediction.
Author Duan, Yanjie
L.V., Yisheng
Wang, Fei-Yue
Author_xml – sequence: 1
  givenname: Yanjie
  surname: Duan
  fullname: Duan, Yanjie
  email: yisheng.lv@ia.ac.cn
  organization: The State Key Laboratory of Management and Control for Complex Systems Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
– sequence: 2
  givenname: Yisheng
  surname: L.V.
  fullname: L.V., Yisheng
  email: yisheng.lv@ia.ac.cn
  organization: State Key Lab. of Manage. & Control for Complex Syst., Inst. of Autom., Beijing, China
– sequence: 3
  givenname: Fei-Yue
  surname: Wang
  fullname: Wang, Fei-Yue
  organization: The State Key Laboratory of Management and Control for Complex Systems Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
BookMark eNotj81Kw0AURkepYK15AHGTF0g6d_7vUoLWQsRFsy_TzAyOpkmZRItvb8AePji7D84dWfRD7wl5AFoCUFxvm11VMgqq1BqlMuqKZKgNSIoUjEF5TZYMJC8oBX1LsnH8pDOcGcXpkqybZH98l0_x6PNT8i62Uxz6_Bynj7zeNW9577-T7WZN5yF93ZObYLvRZxevSPPy3FSvRf2-2VZPdRGRToVkzojQBiVMi20AqblWxinH5lnhUKC2FBCZ8A6kEtzrA4Jqgw6aMcdX5PH_Nnrv96cUjzb97i-F_A9HVkTa
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ITSC.2016.7795686
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781509018895
1509018891
EISSN 2153-0017
EndPage 1058
ExternalDocumentID 7795686
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i90t-52d84fcf648c9cf1573768d6d26d2a4d9497a019924ed15643e7b916cf7f722d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:53:06 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-52d84fcf648c9cf1573768d6d26d2a4d9497a019924ed15643e7b916cf7f722d3
PageCount 6
ParticipantIDs ieee_primary_7795686
PublicationCentury 2000
PublicationDate 2016-Nov.
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationTitle Proceedings (IEEE Conference on Intelligent Transportation Systems)
PublicationTitleAbbrev ITSC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000328630
Score 2.1947002
Snippet Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time...
SourceID ieee
SourceType Publisher
StartPage 1053
SubjectTerms Logic gates
Machine learning
Predictive models
Real-time systems
Recurrent neural networks
Roads
Title Travel time prediction with LSTM neural network
URI https://ieeexplore.ieee.org/document/7795686
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB5UemgvfWjpmxx6bHSTbHayZ6m0YEUwFG-S7OyCICo--vu7E61toZfCQpaFJMwGMsnM9wB4FEjk87oICxO7UGpBYWYKFxIKmzodJVjZt733cTDIxmM9rMHTgQtjra3AZ7bN06qXTwuz5VJZB5HJbaoOdUTccbUO9RTWhVPJV-MyErrzmo-6jN1S7f15vwxUqvzRO_3fnc-g9U3EC4aHFHMONTu_gJMfGoJN6ORsIDQL2CQ-WK6478J7HXCBNeiP8reAJSuLmT9UgO8W5L3nvPsS7l0QwqkWG_-jSJl0ximZGW1clKJ_JWSkKPajkKSlxkIwiFRaYuWXxGLpv_mMQ4dxTMklNOaLub2CoFRGaWOpjPwltYvLlCKbJClbSkWSimtocuST5U7nYrIP-ubv5Vs45s3d8fLuoLFZbe09HJmPzXS9eqgezif695BJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba8IwFD44N9j2sovK7svDHldN2jRpnmWirIpgGb5JmwsIouJ0v3851bkN9jIINATaclLoac_5LgBPVBrj8zoNch26gCtqgkTnLjCS2tgpFsnSvu0tlYNBMh6rYQWe91wYa20JPrNNnJa9fLPQGyyVtaREcps4gMOY85Bt2Vr7igoqw4noq3XJqGr1slEb0VuiuTvzl4VKmUE6Z_-79znUv6l4ZLhPMhdQsfNLOP2hIliDVoYWQjOCNvFkucLOC-42wRIrSUdZn6BoZT7zhxLyXYes85K1u8HOByGYKrr2v4om4U47wROttGOx9C-FxAgT-pFzo7iSOUUYKbcGtV8iKwv_1aeddDIMTdSA6nwxt1dACqGF0tYUzF9SubCIDbNRFKOpFOMmv4YaRj5ZbpUuJrugb_5efoTjbtZPJ2lv8HoLJ7jRW5beHVTXq429hyP9sZ6-rx7KB_UJr1STkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Conference+on+Intelligent+Transportation+Systems%29&rft.atitle=Travel+time+prediction+with+LSTM+neural+network&rft.au=Duan%2C+Yanjie&rft.au=L.V.%2C+Yisheng&rft.au=Wang%2C+Fei-Yue&rft.date=2016-11-01&rft.pub=IEEE&rft.eissn=2153-0017&rft.spage=1053&rft.epage=1058&rft_id=info:doi/10.1109%2FITSC.2016.7795686&rft.externalDocID=7795686