A machine learning approach to fall detection algorithm using wearable sensor

Falls are the primary cause of accidents for the elderly in living environment. Falls frequently cause fatal and non-fatal injuries that are associated with a large amount of medical costs. Reduction hazards in living environment and doing exercise for training balance and muscle are the common stra...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE) s. 707 - 710
Hlavní autori: Chia-Yeh Hsieh, Chih-Ning Huang, Kai-Chun Liu, Woei-Chyn Chu, Chia-Tai Chan
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.11.2016
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Falls are the primary cause of accidents for the elderly in living environment. Falls frequently cause fatal and non-fatal injuries that are associated with a large amount of medical costs. Reduction hazards in living environment and doing exercise for training balance and muscle are the common strategies for fall prevention. But falls cannot be avoided completely; fall detection provides the alarm in time that can decrease the injuries or death caused by no rescue. We propose machine learning-based fall detection algorithm using multi-SVM with linear, quadratic or polynomial kernel function, and k-NN classifier. Eight kinds of falling postures and seven types of daily activities arranged in the experiment are used to explore the performance of the machine learning-based fall detection algorithm. The emulated falls were performed on a soft mat by ten healthy young subjects wearing protectors. The k-nearest neighbor method with 0.1 second window size has the highest accuracy, which is 96.26%. The results show that the proposed machine learning fall detection algorithm can fulfill the requirements of adaptability and flexibility for the individual differences.
AbstractList Falls are the primary cause of accidents for the elderly in living environment. Falls frequently cause fatal and non-fatal injuries that are associated with a large amount of medical costs. Reduction hazards in living environment and doing exercise for training balance and muscle are the common strategies for fall prevention. But falls cannot be avoided completely; fall detection provides the alarm in time that can decrease the injuries or death caused by no rescue. We propose machine learning-based fall detection algorithm using multi-SVM with linear, quadratic or polynomial kernel function, and k-NN classifier. Eight kinds of falling postures and seven types of daily activities arranged in the experiment are used to explore the performance of the machine learning-based fall detection algorithm. The emulated falls were performed on a soft mat by ten healthy young subjects wearing protectors. The k-nearest neighbor method with 0.1 second window size has the highest accuracy, which is 96.26%. The results show that the proposed machine learning fall detection algorithm can fulfill the requirements of adaptability and flexibility for the individual differences.
Author Chia-Yeh Hsieh
Chih-Ning Huang
Chia-Tai Chan
Kai-Chun Liu
Woei-Chyn Chu
Author_xml – sequence: 1
  surname: Chia-Yeh Hsieh
  fullname: Chia-Yeh Hsieh
  email: g39904006@ym.edu.tw
  organization: Dept. of Biomed. Eng., Nat. Yang-Ming Univ., Taipei, Taiwan
– sequence: 2
  surname: Chih-Ning Huang
  fullname: Chih-Ning Huang
  email: g39604001@ym.edu.tw
  organization: Dept. of Biomed. Eng., Nat. Yang-Ming Univ., Taipei, Taiwan
– sequence: 3
  surname: Kai-Chun Liu
  fullname: Kai-Chun Liu
  email: g30104026@ym.edu.tw
  organization: Dept. of Biomed. Eng., Nat. Yang-Ming Univ., Taipei, Taiwan
– sequence: 4
  surname: Woei-Chyn Chu
  fullname: Woei-Chyn Chu
  email: wchu@ym.edu.tw
  organization: Dept. of Biomed. Eng., Nat. Yang-Ming Univ., Taipei, Taiwan
– sequence: 5
  surname: Chia-Tai Chan
  fullname: Chia-Tai Chan
  email: ctchan@ym.edu.tw
  organization: Dept. of Biomed. Eng., Nat. Yang-Ming Univ., Taipei, Taiwan
BookMark eNotj81qwzAQhFVoDmmaJ8hFL2BXsixLewwh_YGEHJp7WMvrRGBLRnYpffu6NKeBYb5h5ok9hhiIsY0UuZQCXj522-PnPi-ErHJjS1EIeGBrMFZqAULZCvSSHbe8R3fzgXhHmIIPV47DkOJs8inyFruONzSRm3wMHLtrTH669fxr_It-zwzWHfGRwhjTM1vMwEjru67Y-XV_3r1nh9PbPOeQeRBTpqUFKtqKgGyppNMoyxKhpMqoutbGCgBonXVaIypTN8po0zitlCOtbaVWbPNf64noMiTfY_q53D-qX5LzS5M
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAMSE.2016.7840209
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509038695
1509038698
EndPage 710
ExternalDocumentID 7840209
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-5189e2f6e9e8431c5a144a94e673bb5780999fc8c55aa37bd3757dc533ce55863
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:46 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-5189e2f6e9e8431c5a144a94e673bb5780999fc8c55aa37bd3757dc533ce55863
PageCount 4
ParticipantIDs ieee_primary_7840209
PublicationCentury 2000
PublicationDate 2016-Nov.
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationTitle 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE)
PublicationTitleAbbrev ICAMSE
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6946357
Snippet Falls are the primary cause of accidents for the elderly in living environment. Falls frequently cause fatal and non-fatal injuries that are associated with a...
SourceID ieee
SourceType Publisher
StartPage 707
SubjectTerms Acceleration
Detection algorithms
fall detection
Feature extraction
machine learning
Sensitivity
Support vector machines
Training
wearable sensor
Wearable sensors
Title A machine learning approach to fall detection algorithm using wearable sensor
URI https://ieeexplore.ieee.org/document/7840209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEB1UeuipLVr6TQ49NrrrbjbJsYjSHioePHiTfMxaQXeLrvbvN4lbS6GX3kJICEwYZl7y3gzAo3YhWqU8oUYhoy5CGaqttdRqIXnM8sgkOjSb4OOxmM3kpAFPRy0MIgbyGXb9MPzl29Ls_FNZjwuPdmQTmpxnB61WXUgojmTvdeCw79CztbJuvfJXy5QQMUZn_zvrHDo_0jsyOQaVC2hg0Ya3Z7IOpEckdZeHBfkuBk6qkuRqtSIWq0CrKohaLUqH-d_XxLPaF-TT7fEKKbJ1mLXcdGA6Gk4HL7Tug0CXMqooi4XEfp6hROGNyZQDQUqmmPFEa-dxPsnLjTCMKZVwbRPOuDUujzPImMiSS2gVZYFXQERkTS442pzrVPRTbWOJNvNl6UzufPMa2t4S849DpYt5bYSbv6dv4dQb-6DMu4NWtdnhPZyYfbXcbh7C9XwBwOGURQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmuhJDRi_7cGjC7vsdtseDYFABMKBAzfSj1kkgV0Ci_5922XFmHjx1jRtmkzTTF_73jyAZ2VTtIxY6GmJ1LMZSnvKGOMZxQULaOLrUBVmE2w04tOpGFfg5aCFQcSCfIYN1yz-8k2md-6prMm4QzviCI6dc1ap1ipLCQW-aPbbFv12HF8rbpRjf5mmFDmje_6_1S6g_iO-I-NDWrmECqY1GL6SVUF7RFL6PMzJdzlwkmckkcslMZgXxKqUyOU8s6j_fUUcr31OPu0cp5EiW4tas00dJt3OpN3zSicEbyH83KMBF9hKYhTIXTiptDBIighjFiplz5y75iWaa0qlDJkyIaPMaHuT00gpj8MrqKZZitdAuG90whmahKmItyJlAoEmdoXpdGJP5w3UXCRm632ti1kZhNu_u5_gtDcZDmaD_ujtDs5c4Pc6vXuo5psdPsCJ_sgX281jsVVfqgeXjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Advanced+Materials+for+Science+and+Engineering+%28ICAMSE%29&rft.atitle=A+machine+learning+approach+to+fall+detection+algorithm+using+wearable+sensor&rft.au=Chia-Yeh+Hsieh&rft.au=Chih-Ning+Huang&rft.au=Kai-Chun+Liu&rft.au=Woei-Chyn+Chu&rft.date=2016-11-01&rft.pub=IEEE&rft.spage=707&rft.epage=710&rft_id=info:doi/10.1109%2FICAMSE.2016.7840209&rft.externalDocID=7840209