Efficient Image Re-Ranking Computation on GPUs

The huge growth of image collections and multimedia resources available is remarkable. One of the most common approaches to support image searches relies on the use of Content-Based Image Retrieval (CBIR) systems. CBIR systems aim at retrieving the most similar images in a collection, given a query...

Full description

Saved in:
Bibliographic Details
Published in:2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications pp. 95 - 102
Main Authors: Pedronette, D. C. G., da S Torres, R., Borin, E., Breternitz, M.
Format: Conference Proceeding
Language:English
Published: IEEE 01.07.2012
Subjects:
ISBN:1467316318, 9781467316316
ISSN:2158-9178
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The huge growth of image collections and multimedia resources available is remarkable. One of the most common approaches to support image searches relies on the use of Content-Based Image Retrieval (CBIR) systems. CBIR systems aim at retrieving the most similar images in a collection, given a query image. Since the effectiveness of those systems is very dependent on the accuracy of ranking approaches, re-ranking algorithms have been proposed to exploit contextual information and improve the effectiveness of CBIR systems. Image re-ranking algorithms typically consider the relationship among every image in a given dataset when computing the new ranking. This approach demands a huge amount of computational power, which may render it prohibitive on very large data sets. In order to mitigate this problem, we propose using the computational power of Graphics Processing Units (GPU) to speedup the computation of image re-ranking algorithms. GPUs are fast emerging and relatively inexpensive parallel processors that are becoming available on a wide range of computer systems. In this paper, we propose a parallel implementation of an image re-ranking algorithm designed to fit the computational model of GPUs. Experimental results demonstrate that relevant performance gains can be obtained by our approach.
AbstractList The huge growth of image collections and multimedia resources available is remarkable. One of the most common approaches to support image searches relies on the use of Content-Based Image Retrieval (CBIR) systems. CBIR systems aim at retrieving the most similar images in a collection, given a query image. Since the effectiveness of those systems is very dependent on the accuracy of ranking approaches, re-ranking algorithms have been proposed to exploit contextual information and improve the effectiveness of CBIR systems. Image re-ranking algorithms typically consider the relationship among every image in a given dataset when computing the new ranking. This approach demands a huge amount of computational power, which may render it prohibitive on very large data sets. In order to mitigate this problem, we propose using the computational power of Graphics Processing Units (GPU) to speedup the computation of image re-ranking algorithms. GPUs are fast emerging and relatively inexpensive parallel processors that are becoming available on a wide range of computer systems. In this paper, we propose a parallel implementation of an image re-ranking algorithm designed to fit the computational model of GPUs. Experimental results demonstrate that relevant performance gains can be obtained by our approach.
Author da S Torres, R.
Borin, E.
Breternitz, M.
Pedronette, D. C. G.
Author_xml – sequence: 1
  givenname: D. C. G.
  surname: Pedronette
  fullname: Pedronette, D. C. G.
  email: dcarlos@ic.unicamp.br
  organization: Inst. of Comput. (IC), Univ. of Campinas (UNICAMP), Campinas, Brazil
– sequence: 2
  givenname: R.
  surname: da S Torres
  fullname: da S Torres, R.
  email: rtorres@ic.unicamp.br
  organization: Inst. of Comput. (IC), Univ. of Campinas (UNICAMP), Campinas, Brazil
– sequence: 3
  givenname: E.
  surname: Borin
  fullname: Borin, E.
  email: edson@ic.unicamp.br
  organization: Inst. of Comput. (IC), Univ. of Campinas (UNICAMP), Campinas, Brazil
– sequence: 4
  givenname: M.
  surname: Breternitz
  fullname: Breternitz, M.
  email: mauricio.breternitz@amd.com
  organization: Adv. Micro Devices (AMD), Austin, TX, USA
BookMark eNotjE1Lw0AUAFesYFtz8-YlfyDx7Wa_3rGEWgMFS63nsknellWzKU08-O8NVBgYmMMs2Cz2kRh75JBzDvhcve9WuQAucsFvWILGgtGopAGubtmCS20KrgtuZ2wuuLIZcmPvWTIMnwAwdYsIc5avvQ9NoDimVedOlO4p27v4FeIpLfvu_DO6MfQxndjsPoYHdufd90DJv5fs8LI-lK_Z9m1TlattFhDGTHrEuvbeUusNNFIr8DVAI4iEBOukaoVR2oFFb9oWlUKgRhuLwolGmGLJnq7bQETH8yV07vJ71MLCRPEH4j5FRA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISPA.2012.21
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769547015
076954701X
EndPage 102
ExternalDocumentID 6280280
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-4f99bbff8edf70c4650fb00c2ee2408a45d2756a089f7dd95590ec67892a2c273
IEDL.DBID RIE
ISBN 1467316318
9781467316316
ISSN 2158-9178
IngestDate Wed Aug 27 04:58:40 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-4f99bbff8edf70c4650fb00c2ee2408a45d2756a089f7dd95590ec67892a2c273
PageCount 8
ParticipantIDs ieee_primary_6280280
PublicationCentury 2000
PublicationDate 2012-July
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-July
PublicationDecade 2010
PublicationTitle 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications
PublicationTitleAbbrev ispa
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188990
ssj0002672344
Score 1.5065904
Snippet The huge growth of image collections and multimedia resources available is remarkable. One of the most common approaches to support image searches relies on...
SourceID ieee
SourceType Publisher
StartPage 95
SubjectTerms Algorithm design and analysis
content-based image retrieval
Context
GPU
Graphics processing unit
Image processing
image re-ranking
Image retrieval
Kernel
OpenCL
parallel computing
Title Efficient Image Re-Ranking Computation on GPUs
URI https://ieeexplore.ieee.org/document/6280280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQNTgRbxVgZG3AY39WNEqIVKqIpKQd0qxzlLHWhRH_x-zk4aGFiQMsRJZPmR853P930HcKvQaBQiZ452QCwR1jDVs8jwnlbCnAwIG_yQ7y9yPFazmU5rcFdhYRAxBJ9hx9-Gs_x8ZXfeVdYVXPmTwDrUpRQFVqvyp3Ahea9UVb5M_yptJbyLhZSal2mpAq5L-FRN9HJP91SWRRUUr7uj1_TBB33xjmcQ_ZV0JeicYfN_rT2C9g94L0ortXQMNVyeQHOfvSEqhbkFnUFgj6A6otEHrSrRBNnEhEwKUfF1mLSIrqf0bdOG6XAwfXxmZfYEttDxliVO6yxzTmHuZGwTssQciZjliJ7VzCT93DO_m1hpJ_PcE9HFaEl1aW64JaPmFBrL1RLPIMq4S_qJsdizlqrNaFhtQKQKbeOsL86h5Xs__yz4MeZlxy_-fnwJh35si5DXK2hs1zu8hgP7tV1s1jdhUr8BsniZpw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggRTgRbxJgMjboPrOPGIUEsrShWVgrpViXOWOtCiPvj9nJ00MLAgZYiTyPIj5zuf7_sO4DbCRKGUGTO0A2JC6oRFbY0M72klzMiA0M4P-T4Ih8NoMlFxBe5KLAwiuuAzbNpbd5afLfTGuspakkf2JHAHdgMhuJ-jtUqPCpchbxfKypbpb6XNhHWykFqzUh1GDtklbbImerklfCrKsgyLV63-a_xgw75403KI_kq74rROt_a_9h5C4we-58WlYjqCCs6PobbN3-AV4lyHZsfxR1AdXv-D1hVvhGyUuFwKXv61mzaPrqf4bdWAcbczfuyxIn8Cmyl_zYRRKk2NiTAzoa8F2WKGhExzRMtrloggs9zviR8pE2aZpaLzUZPyUjzhmsyaE6jOF3M8BS_lRgQi0djWmqpNaVi1w6RKpf00kGdQt72ffuYMGdOi4-d_P76B_d74ZTAd9IfPF3BgxzkPgL2E6nq5wSvY01_r2Wp57Sb4G-tvnO4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+10th+International+Symposium+on+Parallel+and+Distributed+Processing+with+Applications&rft.atitle=Efficient+Image+Re-Ranking+Computation+on+GPUs&rft.au=Pedronette%2C+D.+C.+G.&rft.au=da+S+Torres%2C+R.&rft.au=Borin%2C+E.&rft.au=Breternitz%2C+M.&rft.date=2012-07-01&rft.pub=IEEE&rft.isbn=1467316318&rft.issn=2158-9178&rft.spage=95&rft.epage=102&rft_id=info:doi/10.1109%2FISPA.2012.21&rft.externalDocID=6280280
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-9178&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-9178&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-9178&client=summon