An efficient batch expensive multi-objective evolutionary algorithm based on Decomposition

This paper proposes a novel surrogate-model-based multi-objective evolutionary algorithm, which is called Multi-objective Bayesian Optimization Algorithm based on Decomposition (MOBO/D). In this algorithm, a multi-objective problem is decomposed into several subproblems which will be solved simultan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 IEEE Congress on Evolutionary Computation (CEC) S. 1343 - 1349
Hauptverfasser: Xi Lin, Qingfu Zhang, Sam Kwong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2017
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!