An efficient batch expensive multi-objective evolutionary algorithm based on Decomposition
This paper proposes a novel surrogate-model-based multi-objective evolutionary algorithm, which is called Multi-objective Bayesian Optimization Algorithm based on Decomposition (MOBO/D). In this algorithm, a multi-objective problem is decomposed into several subproblems which will be solved simultan...
Uloženo v:
| Vydáno v: | 2017 IEEE Congress on Evolutionary Computation (CEC) s. 1343 - 1349 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2017
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes a novel surrogate-model-based multi-objective evolutionary algorithm, which is called Multi-objective Bayesian Optimization Algorithm based on Decomposition (MOBO/D). In this algorithm, a multi-objective problem is decomposed into several subproblems which will be solved simultaneously. MOBO/D builds Gaussian process model for each objective to learn the optimization surface, and defines utility function for each subproblem to guide the searching process. At each generation, MOEA/D algorithm is called to locate a set of candidate solutions which maximize all utility functions respectively, and a subset of those candidate solutions is selected for parallel batch evaluation. Experimental study on different test instances validates that MOBO/D can efficiently solve expensive multi-objective problems in parallel. The performance of MOBO/D is also better than several classical expensive optimization methods. |
|---|---|
| AbstractList | This paper proposes a novel surrogate-model-based multi-objective evolutionary algorithm, which is called Multi-objective Bayesian Optimization Algorithm based on Decomposition (MOBO/D). In this algorithm, a multi-objective problem is decomposed into several subproblems which will be solved simultaneously. MOBO/D builds Gaussian process model for each objective to learn the optimization surface, and defines utility function for each subproblem to guide the searching process. At each generation, MOEA/D algorithm is called to locate a set of candidate solutions which maximize all utility functions respectively, and a subset of those candidate solutions is selected for parallel batch evaluation. Experimental study on different test instances validates that MOBO/D can efficiently solve expensive multi-objective problems in parallel. The performance of MOBO/D is also better than several classical expensive optimization methods. |
| Author | Qingfu Zhang Xi Lin Sam Kwong |
| Author_xml | – sequence: 1 surname: Xi Lin fullname: Xi Lin email: xi.lin@my.cityu.edu.hk organization: Dept. of Comput. Sci., City Univ. of Hong Kong, Hong Kong, China – sequence: 2 surname: Qingfu Zhang fullname: Qingfu Zhang email: gingfu.zhang@cityu.edu.hk organization: Dept. of Comput. Sci., City Univ. of Hong Kong, Hong Kong, China – sequence: 3 surname: Sam Kwong fullname: Sam Kwong email: cssamk@cityu.edu.hk organization: Dept. of Comput. Sci., City Univ. of Hong Kong, Hong Kong, China |
| BookMark | eNotT81OwzAYCxIc2OCOxCUv0PIlTZrlOJXxI03ishOXKUm_sKA2qdpsgrenEzvZlmzLXpDrmCIS8sCgZAz0U7NpSg5MlUrXWtRwRRZMgoaZMnZLPteRovfBBYyZWpPdgeLPgHEKJ6T9scuhSPYbXT5rPKXumEOKZvylpvtKY8iHfo5N2NIU6TO61A9pCmfPHbnxppvw_oJLsnvZ7Jq3Yvvx-t6st0XQkAvhxcpz5EIoLbjVlZEaDWfeoqx8LbmyVa3ACel4K5FL5ThgK9gKnNfMVkvy-F8bEHE_jKGfx-0vb6s_Io9Psw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CEC.2017.7969460 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1509046011 9781509046010 |
| EndPage | 1349 |
| ExternalDocumentID | 7969460 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-4f48f2e2447942b93a59ea21fbe53f6527b3670c45c2d5e257c20ed4180cf91b3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:04 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-4f48f2e2447942b93a59ea21fbe53f6527b3670c45c2d5e257c20ed4180cf91b3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_7969460 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-June |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE Congress on Evolutionary Computation (CEC) |
| PublicationTitleAbbrev | CEC |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6460514 |
| Snippet | This paper proposes a novel surrogate-model-based multi-objective evolutionary algorithm, which is called Multi-objective Bayesian Optimization Algorithm based... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1343 |
| SubjectTerms | Algorithm design and analysis Bayes methods Computational modeling Gaussian processes Kernel Lead Optimization |
| Title | An efficient batch expensive multi-objective evolutionary algorithm based on Decomposition |
| URI | https://ieeexplore.ieee.org/document/7969460 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvDotvvIY3OU2uJBSg9FipeSx8RWdLesbcF_b5JdK4IXbyEkBCaZmUzyzTcI3SQghc5jZ_2kdAGKZCrKBbERl4m1hEvFA2_B0yMfj_PZTExa6HaXCwMAAXwGPd8Mf_mm1Bv_VNbnggnCXIC-xzmrc7W-fx5j0R8MBx6qxXvNsF_1UoK7GB3-b6Ej1P3Ju8OTnUc5Ri0oOuj5rsAQiB7cHKyc6Vxgz8sfgOc4AAKjUr3WhgvDtjlLsvrE8u2ldMH_4h17Z2VwWeB78CDyBqnVRdPRcDp4iJqKCNFSxOuIWJLbFJxHdlqUKpFJKkCmiVVAM8toypXnY9OE6tRQcNqo0xgMSfJYW5Go7AS1i7KAU4Spu-YxK12AJA0xzuppYxmX3FCrNOXJGep4scxXNefFvJHI-d_dF-jAS76GUF2i9rrawBXa19v18qO6Dhv1BSRQmO4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnpSacW3OXh0291tstkcpbZUXJceihQvJY-Jreiu1LbgvzdJ14rgxVsICYFJZiaTfPMNQlcRCK7S0Fo_IWyAIhIZpJyYgInIGMKEZJ634DFjeZ6Ox3xYQ9ebXBgA8OAzaLmm_8vXpVq6p7I24wkniQ3Qt1zlrCpb6_vvMeTtbq_rwFqsVQ38VTHFO4z-3v-W2kfNn8w7PNz4lANUg6KBnm4KDJ7qwc7B0hrPKXbM_B56jj0kMCjly9p0YVhVp0nMP7F4fS5t-D99w85daVwW-BYcjLzCajXRqN8bdQdBVRMhmPFwERBDUhOD9clWj2LJO4JyEHFkJNCOSWjMpGNkU4SqWFOw-qjiEDSJ0lAZHsnOIaoXZQFHCFN70UuMsCGS0ERbu6e0SZhgmhqpKIuOUcOJZfK-Zr2YVBI5-bv7Eu0MRg_ZJLvL70_RrtuFNaDqDNUX8yWco221Wsw-5hd-074ASF6cNw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=An+efficient+batch+expensive+multi-objective+evolutionary+algorithm+based+on+Decomposition&rft.au=Xi+Lin&rft.au=Qingfu+Zhang&rft.au=Sam+Kwong&rft.date=2017-06-01&rft.pub=IEEE&rft.spage=1343&rft.epage=1349&rft_id=info:doi/10.1109%2FCEC.2017.7969460&rft.externalDocID=7969460 |