Intrusion detection based on the semi-supervised Fuzzy C-Means clustering algorithm

The intrusion detection algorithm based on the supervised learning has a high detection rate, but all the labeled data which hard to collect are needed when the algorithm used. Meanwhile the intrusion detection algorithm based on the unsupervised learning has a high False Positive Rate. In this pape...

Full description

Saved in:
Bibliographic Details
Published in:2012 2nd International Conference on Consumer Electronics, Communications and Networks pp. 2667 - 2670
Main Authors: Feng Guorui, Zou Xinguo, Wu Jian
Format: Conference Proceeding
Language:English
Published: IEEE 01.04.2012
Subjects:
ISBN:9781457714146, 1457714140
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The intrusion detection algorithm based on the supervised learning has a high detection rate, but all the labeled data which hard to collect are needed when the algorithm used. Meanwhile the intrusion detection algorithm based on the unsupervised learning has a high False Positive Rate. In this paper a semi-supervised learning algorithm for intrusion detection is proposed combined with the Fuzzy C-Means algorithm. The sensitivity to the initial values and the probability of trapping in local optimum are greatly reduced by using few labeled data to improve the learning ability of the FCM algorithm. The KDD CUP99 data set is adopted as the experimental subject. The result proves that the attack behaviors can be more efficiently found from the network data by the semi-supervised FCM clustering algorithm.
AbstractList The intrusion detection algorithm based on the supervised learning has a high detection rate, but all the labeled data which hard to collect are needed when the algorithm used. Meanwhile the intrusion detection algorithm based on the unsupervised learning has a high False Positive Rate. In this paper a semi-supervised learning algorithm for intrusion detection is proposed combined with the Fuzzy C-Means algorithm. The sensitivity to the initial values and the probability of trapping in local optimum are greatly reduced by using few labeled data to improve the learning ability of the FCM algorithm. The KDD CUP99 data set is adopted as the experimental subject. The result proves that the attack behaviors can be more efficiently found from the network data by the semi-supervised FCM clustering algorithm.
Author Zou Xinguo
Wu Jian
Feng Guorui
Author_xml – sequence: 1
  surname: Feng Guorui
  fullname: Feng Guorui
  email: fgr1015@yahoo.cn
  organization: Dept. of Inf. Sci. & Technol., Shandong Univ. of Political Sci. & Law, Jinan, China
– sequence: 2
  surname: Zou Xinguo
  fullname: Zou Xinguo
  organization: Dept. of Inf. Sci. & Technol., Shandong Univ. of Political Sci. & Law, Jinan, China
– sequence: 3
  surname: Wu Jian
  fullname: Wu Jian
  organization: Dept. of Inf. Sci. & Technol., Shandong Univ. of Political Sci. & Law, Jinan, China
BookMark eNpVUMtOwzAQNAIkoOQLevEPJKxjx7GPKGpppQIHeq-cZN0a5VHFDlL79aSiF-YwL2n3ME_krus7JGTOIGEM9EuxKD4wJCmwNJETC81vSKRzxUSW50wwrm__ZSEfSOT9N0zIIVVCP5KvdReG0bu-ozUGrMLFlcZjTScTDkg9ti724xGHH3epl-P5fKJF_I6m87RqRh9wcN2emmbfDy4c2mdyb03jMbrqjGyXi22xijefb-vidRM7DSEWNVcqK7Xk0oIyDCqRGoWlQURAyaFMrWG5Qm4UgK1tKTPgFkppwNQIfEbmf2_ddLE7Dq41w2l3XYL_AlDYVXM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CECNet.2012.6201493
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781457714139
9781457714153
1457714132
1457714159
EndPage 2670
ExternalDocumentID 6201493
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-4d3885b9636f08a10c42a8ebaeee0e630b2fa178e3a800fdfb6503f0b6a0ade03
IEDL.DBID RIE
ISBN 9781457714146
1457714140
IngestDate Wed Aug 27 03:51:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-4d3885b9636f08a10c42a8ebaeee0e630b2fa178e3a800fdfb6503f0b6a0ade03
PageCount 4
ParticipantIDs ieee_primary_6201493
PublicationCentury 2000
PublicationDate 2012-April
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-April
PublicationDecade 2010
PublicationTitle 2012 2nd International Conference on Consumer Electronics, Communications and Networks
PublicationTitleAbbrev CECNet
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000702849
Score 1.4861786
Snippet The intrusion detection algorithm based on the supervised learning has a high detection rate, but all the labeled data which hard to collect are needed when...
SourceID ieee
SourceType Publisher
StartPage 2667
SubjectTerms Algorithm design and analysis
Charge carrier processes
Clustering algorithms
Decision support systems
FCM
Hafnium compounds
Intrusion detection
KDD CUP 99
semi-supervised
Zirconium
Title Intrusion detection based on the semi-supervised Fuzzy C-Means clustering algorithm
URI https://ieeexplore.ieee.org/document/6201493
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcAEqEV8ywMjaZ04je05agUDVSU6dKvs5AyR2rRqEyT66zm7oQiJhc3xYFkvvnsX594dIQ8mtlzmDAIFWgTItwptDu0KmQvp0qJtRtY3mxDjsZzN1KRFHg9aGADwyWfQc0P_Lz9fZbW7KusnkQvo-RE5EkLstVqH-xQ8uuhpldduDYQIY_xy-C7p1DwnTdWhkKl-OkzH4HIpw6jXLPurv4qnl9Hp_zZ2Rro_Oj06OTDQOWlB2SGvz6UTUiDeNIfKZ1qV1JFVTnGA8R7dwrIItvXauQk3Pap3u0-aBi-AvEWzRe2KJ-CCVC_eVpuiel92yXQ0nKZPQdM6ISgUq4I451IODBpXYpnUIcviSEswGnfOIOHMRFaHQgLXGDDa3BoM1LhlJtFM58D4BWmXqxIuCeWJjqW1khmVxTEDowy6CGMw0MiykMsr0nF4zNf74hjzBorrv6dvyImDfJ_6ckvaiAfckePsoyq2m3v_Rr8A7G2euA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSkBoy_7cGjg24tW3deJBBhIZEDN9Jur0oCg8BmIn-9r2NiTLx463pomm9973vr3vceIY9aGC5TBk4IKnCQb0O0ObQrZC6kS4O26Zmy2UQQx3IyCUc18rTXwgBAmXwGLTss_-Wny6SwV2Vt37MBPT8ghx0hPHen1trfqODhRV8bluqtThC4Ar8dvos6Vc9-VXfIZWE7eo5isNmUrteqFv7VYaUkmO7p_7Z2Rpo_Sj062nPQOalB1iCv_cxKKRBxmkJe5lpl1NJVSnGAER_dwGLmbIqVdRR2ultst580coaAzEWTeWHLJ-CCVM3flutZ_r5oknH3eRz1nKp5gjMLWe6IlEvZ0WhevmFSuSwRnpKgFe6cgc-Z9oxyAwlcYchoUqMxVOOGaV8xlQLjF6SeLTO4JJT7SkhjJNNhIgQDHWp0ElpjqJEkLpdXpGHxmK525TGmFRTXf08_kOPeeDiYDvrxyw05sfDvEmFuSR2xgTtylHzks836vny7X1_Yof8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+2nd+International+Conference+on+Consumer+Electronics%2C+Communications+and+Networks&rft.atitle=Intrusion+detection+based+on+the+semi-supervised+Fuzzy+C-Means+clustering+algorithm&rft.au=Feng+Guorui&rft.au=Zou+Xinguo&rft.au=Wu+Jian&rft.date=2012-04-01&rft.pub=IEEE&rft.isbn=9781457714146&rft.spage=2667&rft.epage=2670&rft_id=info:doi/10.1109%2FCECNet.2012.6201493&rft.externalDocID=6201493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457714146/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457714146/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457714146/sc.gif&client=summon&freeimage=true