Model predictive energy scheduling for building microgrid

This paper presents a model predictive control (MPC) approach to economic scheduling for a building microgrid at California State University, Long Beach. We first propose a peak demand cost model to extend MPC-based microgrid energy scheduling. The corresponding objective function is then formulated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 North American Power Symposium (NAPS) S. 1 - 6
Hauptverfasser: Sanchez, Edward, Nazari, Masoud H.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2017
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a model predictive control (MPC) approach to economic scheduling for a building microgrid at California State University, Long Beach. We first propose a peak demand cost model to extend MPC-based microgrid energy scheduling. The corresponding objective function is then formulated as a mixed-integer linear programming (MILP) problem. The MPC framework is implemented into MILP optimization to construct MPC-MILP, which is formulated to compensate for uncertainties in day-ahead demand and photovoltaic (PV) power forecasts. Next, we provide the forecast modeling for demand and PV power to improve the accuracy of MPC-MILP. The simulation results show that the MPC-MILP optimization approach provides superior cost minimization over strategies such as MILP, which controls the microgrid subject to one calculation using day-ahead forecasts.
DOI:10.1109/NAPS.2017.8107299