Improvement on Agglomerative Hierarchical Clustering Algorithm Based on Tree Data Structure with Bidirectional Approach

Hierarchical clustering algorithms take an input of pair wise data-item similarities and output a hierarchy of the data-items. This paper presents bi-directional agglomerative hierarchical clustering algorithm to create a bottom-up hierarchy, by iteratively merging the closest pair of data-items int...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2012 Third International Conference on Intelligent Systems Modelling and Simulation s. 25 - 30
Hlavní autori: Dalbouh, Hussain Abu, Norwawi, Norita Md
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.02.2012
Predmet:
ISBN:1467308862, 9781467308861
ISSN:2166-0662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Hierarchical clustering algorithms take an input of pair wise data-item similarities and output a hierarchy of the data-items. This paper presents bi-directional agglomerative hierarchical clustering algorithm to create a bottom-up hierarchy, by iteratively merging the closest pair of data-items into one cluster. The result is a rooted AVL tree. The n leafs correspond to input data-items that need to n/2 or n/2+1 steps to merge into one cluster, correspond to groupings of items in coarser granularities climbing towards the root. As observed from the time complexity and number of steps needed to cluster all data points into one cluster perspective, the performance of the bi-directional agglomerative algorithm using tree data structure is better than the current agglomerative algorithms. Analysis on the experimental results indicates that the improved algorithm has a higher efficiency than previous methods.
ISBN:1467308862
9781467308861
ISSN:2166-0662
DOI:10.1109/ISMS.2012.13