Study of data mining algorithm based on decision tree

Decision tree algorithm is a kind of data mining model to make induction learning algorithm based on examples. It is easy to extract display rule, has smaller computation amount, and could display important decision property and own higher classification precision. For the study of data mining algor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 International Conference On Computer Design and Applications Ročník 1; s. V1-155 - V1-158
Hlavní autoři: Linna Li, Xuemin Zhang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2010
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Decision tree algorithm is a kind of data mining model to make induction learning algorithm based on examples. It is easy to extract display rule, has smaller computation amount, and could display important decision property and own higher classification precision. For the study of data mining algorithm based on decision tree, this article put forward specific solution for the problems of property value vacancy, multiple-valued property selection, property selection criteria, propose to introduce weighted and simplified entropy into decision tree algorithm so as to achieve the improvement of ID3 algorithm. The experimental results show that the improved algorithm is better than widely used ID3 algorithm at present on overall performance.
DOI:10.1109/ICCDA.2010.5541172