PICEA-g using an enhanced fitness assignment method

The preference-inspired co-evolutionary algorithm using goal vectors (PICEA-g) has been demonstrated to perform well on multi-objective problems. The superiority of PICEA-g originates from the smart fitness assignment, that is, candidate solutions are co-evolved with goal vectors along the search. I...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM) s. 72 - 77
Hlavní autoři: ZhiChao Shi, Rui Wang, Tao Zhang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2014
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The preference-inspired co-evolutionary algorithm using goal vectors (PICEA-g) has been demonstrated to perform well on multi-objective problems. The superiority of PICEA-g originates from the smart fitness assignment, that is, candidate solutions are co-evolved with goal vectors along the search. In this study, we identify a limitation of this fitness assignment method, and propose an enhanced fitness assignment method which considers both the performance of goal vectors and the Pareto dominance rank on the fitness calculation of candidate solutions. Experimental results show that PICEA-g with the enhanced approach is effective, especially for bi-objective problems.
DOI:10.1109/MCDM.2014.7007190